We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Targeting the redox metabolism of Plasmodium falciparum

    Françoise Nepveu

    * Author for correspondence

    Université de Toulouse, UPS; PHARMA-DEV (UMR 152); F-31062 Toulouse cedex 9, France.

    &
    Francesco Turrini

    Department of Genetics, Biology & Biochemistry, University of Turin, Via Santena, 5 bis, 10126 Turin, Italy

    Published Online:https://doi.org/10.4155/fmc.13.159

    Targeting the redox metabolism of Plasmodium falciparum to create a fatal overload of oxidative stress is a route to explore the discovery of new antimalarial drugs. There are three main possibilities to target the redox metabolism of P. falciparum at the erythrocytic stage: selective targeting and inhibition of a redox P. falciparum protein or enzyme; oxidant drugs targeting essential parasite components and heme by-products; and redox cycler drugs targeting the parasitized red blood cell. Oxidants and redox cycler agents, with or without specific targets, may disrupt the fragile parasitized erythrocyte redox-dependent architecture given that: redox equilibrium plays a vital role at the erythrocytic stage; P. falciparum possesses major NADPH-dependent redox systems, such as glutathione and thioredoxin ones; and the protein–NADPH-dependent phosphorylation–dephosphorylation process is involved in building new permeation pathways and channels for the nutrient–waste import–export traffic of the parasite.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Cotter C, Sturrock HJW, Hsiang MS et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet doi:10.1016/S0140-6736(13)60310-4 (2013) (Epub ahead of print).
    • Cui L, Yan G, Sattabongkot J et al. Malaria in the Greater Mekong Subregion: heterogeneity and complexity. Acta Tropica121(3),227–239 (2012).
    • Li Q, Weina P. The best drug in the treatment of severe and complicated malaria. Pharmaceuticals3(7),2322–2332 (2010).
    • Guiguemde WA, Shelat AA, Garcia-Bustos JFG et al. Global phenotypic screening for antimalarials. Chem. Biol.19(1),116–129 (2012).▪ Overview of different screenings to discover antimalarial hits.
    • Plouffe D, Brinker A, MacNamara C et al.In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl Acad. Sci. USA105,9059–9064 (2008).
    • Gam FJ, Sanz LM, Vidal J et al. Thousands of chemical starting points for antimalarial lead identification. Nature465(20),305–312 (2010).
    • Delves M, Plouffe D, Scheurer C et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med.9(2),e1001169 (2012).▪▪ Compare the strengths and weakness of each chemical class at targeting each stage of the Plasmodium life cycle.
    • Circu ML, Aw TY. Reactive oxygen, species, cellular redox systems, and apoptosis. Free Radical Biol. Med.48,749–762 (2010).
    • Jortzik E, Becker K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int. J. Med. Microbiol.302,187–194 (2012).
    • 10  Molina-Cruz A, Delong RJ, Charles B et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J. Biol. Chem.283,3217–3223 (2008).
    • 11  Kumar S, Christophides GK, Cantera R et al. The role of reactive oxygen species on Plasmodium melatonic encapsulation in Anopheles gambiae. Proc. Natl Acad. Sci. USA100,14139–14144 (2003).
    • 12  Gonçalves RLS, Oliveira JHM, Oliveira GA et al. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection. PLoS ONE7(7),e41083. (2013).
    • 13  Thomas SL, Lew VL. Plasmodium falciparum and the permeation pathway of the host red blood cell. Trends Parasitol.20,122–125 (2004).
    • 14  Baunaure F, Langsley G. Protein traffic in Plasmodium infected red blood cells. Med. Sci.21,523–529 (2005).
    • 15  Harrison ML, Isaacson CC, Burg DL et al. Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J. Biol. Chem.269,955–959 (1994).
    • 16  Brunati AM, Bordin L, Clari G et al. Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinase in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood96,1550–1557 (2000).
    • 17  Pantaleo A, Ferru E, Giribaldi G et al. Oxidized and poorly glycosylated band 3 is selectively phosphorylated by Syk kinase to form large membrane clusters in normal and G6PD-deficient red blood cells. Biochem. J.418,359–367 (2009).
    • 18  Zipser Y, Piade A, Kosower NS. Erytrhocyte thiol status regulates band 3 phosphotyrosine level via oxidation/reduction of band 3-associated phosphotyrosine phosphatase. FEBS Lett.406,126–130 (1997).
    • 19  Wu Y, Nelson MM, Quaile A et al. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasites Plasmodium falciparum. Malar. J.8,105 (2009).
    • 20  Campanella ME, Chu H, Low PS. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad. Sci. USA102,2402–2407 (2005).
    • 21  Harrison ML, Rathinavelu P, Arese P et al. Role o band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J. Biol. Chem.266,416–4111 (1991).
    • 22  Ferru E, Giger K, Pantaleo A et al. Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood117,5998–6006 (2011).
    • 23  Saldanha C, Silav AS, Gonçalves S et al. Modulation of erythrocyte hemorheological properties by band 3 phosphorylation and dephosphorylation. Clin. Hemorheol. Microcirc.36(3),183–194 (2007).
    • 24  Hosey MM, Tao M. Altered erythrocyte membrane phosphorylation in sickle cell disease. Nature263,424–425 (1976).
    • 25  Terra HT, Daad MJ, Carvalho CR et al. Increased tyrosine phosphorylation of band 3 in hemoglobinopathies. Am. J. Hematol.58,224–230 (1998).
    • 26  Condon MR, Feketova E, Machiedo GW et al. Augmented erythrocyte band 3 phosphorylation in septic mice. Biochim. Biophys. Acta1772(5),580–586 (2007).
    • 27  Mannu F, Arese P, Cappellini Initial et al. Role of Hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in β-thalassemia intermedia erythrocytes. Blood86(5),2014–2020 (1995).
    • 28  Pantaleo A, Ferru E, Carta F et al. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells. PLoS ONE6(1),e15847 (2011).▪▪ Describes the effects of pro-oxidant compounds on the vesiculation of red blood cells.
    • 29  Mauritz JMA, Esposito A, Ginsburg H et al. The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput. Biol.5(4),e1000339 (2009).▪▪ Explores the fine details of the red blood cell homeostasis during five model-defined periods of parasite development, suggesting a progressive reduction in their hemoglobin concentration to prevent premature lysis.
    • 30  Egan TJ. Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J. Inorg. Biochem.102,1288–1299 (2008).
    • 31  Loria P, Miller S, Foley M et al. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other antimalarials. Biochem. J.339,363–370 (1999).
    • 32  Atamna H, Ginsburg H. Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J. Biol. Chem.270,24876–24883 (1995).
    • 33  Ginsburg H, Famin O, Zhang J et al. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarizal mode of action. Biochem. Pharmacol.56,1305–1313 (1998).
    • 34  Iuchi Y. Anemia caused by oxidative stress. In: Anemia. Siverberg D (Ed.). In Tech, Rejeka, Crotia (2012).
    • 35  Ayi K, Turrini F, Piga A et al. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood104(10),3364–3371 (2004).
    • 36  Pantaleo A, Ferru E, Carta F et al. Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by P. falciparum growth. Proteomics10(19),3469–3479 (2010).
    • 37  Müller S. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol. Microbiol.53(5),1291–1305 (2004).
    • 38  Jana S, Paliwal J. Novel molecular targets for antimalarial chemotherapy. Int. J. Antimicrob. Agents30(1),4–10 (2007).
    • 39  Kehr S, Sturm N, Rahlfs S. Compartmentation of redox metabolism in malaria parasites. PLoS Pathogens6(12),e10011242 (2010).▪ Maps the subcellular redox (or not) proteins in the malaria parasite.
    • 40  Becker K, Tilley L, Vennerstrom J L et al. Oxidative stress in malaria-infected erythrocytes: host–parasite interactions. Int. J. Parasitol.34,163–189 (2004).
    • 41  Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum.Nature419,498–511 (2002).
    • 42  Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum.Nature446,88–91 (2007).
    • 43  Uyemura SA, Luo L, Vieira M et al. Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii mitochondria in situ.J. Biol. Chem.279(1),385–393 (2004).
    • 44  Fisher N, Gray PG, Ward SA et al. The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol.23(7),305–310 (2007).
    • 45  Fry M, Pudney M. Site of action of the antimalarial hydroxynaphtoquinone, 2-(trans-4-[4´-chlorophenyl]cyclohexyl)-3-hydroxy-1,4-naphthoquinone (566C80). Biochem. Pharmacol.43(7),1545–1553 (1992).
    • 46  Toure OA, Penali LK, Yapi JD et al. A comparative, randomized clinical trial of artemisinin/naphtoquine twice daily one day versus artemether:lumefantrine six doses regimen in children and adults with uncomplicated falciparum malaria in Côte d’Ivoire. Malar. J.8,148 (2009).
    • 47  Bueno JM, Herreros E, Angulo-Barturen I et al. Exploration of 4(1H)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Med. Chem.4(18),2311–2323 (2012).
    • 48  Anthony MP, Burrows JN, Duparc S, Moehrle JJ, Wells TN. The global pipeline of new medicines for the control and elimination of malaria. Malar. J.11,316 (2012).
    • 49  Bedingfield PTP, Cowen D, Acklam P et al. Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases. J. Med Chem.55(12),5841–5850 (2012).
    • 50  Leung SC, Gibbons P, Amevu R et al. Identification, design and biological evaluation of heterocyclic quinolones targeting Plasmodium falciparum type II NADH:quinone oxidoreductase (PfNDH2). J. Med. Chem.55(5),1844–1857 (2012).
    • 51  Tadigoppula N, Korthikunta V, Gupta S et al. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J. Med. Chem.56(1),31–45 (2013).
    • 52  Geyer JA, Keenan SM, Woodart CL et al. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Biorg. Med. Chem. Lett.19(7),1982–1985 (2009).
    • 53  Cabanillas BJ, Le Lamer AC, Castillo D et al. Dihydrochalcones and benzoic acid derivatives from Piper dennisii.Planta Med.78(9),914–918 (2012).
    • 54  Sharma N, Mohanakrishnan D, Shard A et al. Stilbene-chalcone hybrids: design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J. Med. Chem.55(1),297–311 (2012).
    • 55  Storm J, Perner J, Aparicio I et al.Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development. Malar J.10,193, 1475–2875 (2011).
    • 56  Crowther GJ, Napuli AJ, Gilligan JH et al. Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol. Biochem. Parasitol.175,21–29 (2011).
    • 57  Morin C, Besset T, Moutet JC et al. The aza analogues of 1,4-naphtoquinones are potent substrates and inhibitors of plasmodial thioredoxin and glutathione reductases and of human erythrocyte glutathione reductase. Org. Biomol. Chem.6,2731–2742 (2008).
    • 58  Müller T, Johann L, Jannack B et al. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones – a new strategy to combat malarial parasites. J. Am. Chem. Soc.133,11557–11571 (2011).
    • 59  Çakmak R, Durdagi S, Ekinci D et al. Design, synthesis and biological evaluation of novel nitroaromatic compounds as potent glutathione reductase inhibitors. Bioorg. Med. Chem. Lett.21,5398–5402 (2011).
    • 60  Sentürk M, Talaz O, Ekinci D et al.In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates. Bioorg. Med. Chem. Lett.19(13) 3661–3663 (2009).
    • 61  Lecantoni L, Avery V. Whole-cell in vitro screening foe gametocytocidal compounds. Future Med. Chem.4(18) 2337–2360 (2012).
    • 62  Vennerstrom JL, Eaton JW. Oxidants, oxidants drugs, and malaria. J. Med. Chem.31(7),1269–1277 (1988).
    • 63  Cornut D, Lemoine H, Kanishchev O et al. Incorporation of a 3-(2,2,2-trifluoethyl)-y-hydroxy-y-lactam motif in the side chain of 4-aminoquinolines. Synthesis and antimalarial activities. J. Med. Chem.56(1),73–83 (2013).
    • 64  Perez BC, Teixeira C, Albuquerque IS et al.N-cinnamoylated chloroquine analogues as dual-stage antimalarial leads. J. Med. Chem.56(2),556–567 (2013).
    • 65  Zhang Y, Clark JA, Connelly MC et al. Lead optimization of 3-carboxyl-4(1H)-quinolones to deliver orally bioavailable antimalarials. J. Med. Chem.55(9),4205–4219 (2012).
    • 66  Mei ZW, Wang L, Lu WJ et al. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on indolo(2,3-b)quinolones. J. Med Chem.56(4),1431–1442 (2013).
    • 67  Salas PF, Herrmann C, Cawthray JF et al. Structural characteristics of chloroquine-bridged ferrocenophane analogues of ferroquine may obviate malaria drug-resistance mechanism. J. Med Chem.56(4),1596–1613 (2013).
    • 68  Dubar F, Khalife J, Brocard J et al. Ferroquine, an ingenious antimalarial drug – thoughts on the mechanism of action. Molecules13,2900–2907 (2008).
    • 69  Chavain N, Vezin H, Dive D. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol. Pharm.5(5),710–716 (2008).
    • 70  Chavain N, Davioud-Charvet E, Trivelli X et al. Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorg. Med. Chem.17,8048–8059 (2009).
    • 71  Mafurt J, Chalfein F, Prayoga P et al.Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax.Antimicrob. Agents Chemother.55,4461–4464 (2011).
    • 72  Slack RD, Jacobine AM, Posner GH. Antimalarial peroxides: advances in drug discovery and design. Med. Chem. Comm.3(3),281–297 (2012).
    • 73  Vennerstrom JL, Arbe-Barnes S, Brun R et al. Identification of an antimalarial synthetic trioxolane development candidate. Nature430,900–904 (2004).
    • 74  Charman SA, Arbe-Barnes S, Bathurst IC et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl Acad. Sci. USA.108(11),4400–4405 (2011).
    • 75  O’Neill PM, Amewu RK, Nixon GL et al. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. Angew. Chemie Int. Ed.49,5693–5697 (2010).
    • 76  Benoit-Vical F, Lelièvre J, Berry A et al. Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrob. Agents Chemother.51(4),1463–1472 (2007).
    • 77  Coslédan F, Fraisse L, Pellet A et al. Selection of a trioxaquine as an antimalarial drug candidate. Proc. Natl Acad. Sci. USA105(45),17579–17584 (2008).
    • 78  Bellot F, Coslédan F, Vendier L et al. Trioxaferroquines as a new hybrid antimalarial drugs. J. Med. Chem.53,4103–4109 (2010).
    • 79  Mahajan SS, Gut J, Rosenthal PJ, Renslo AR. Ferrous ion-dependent delivery of therapeutic agents to the malaria parasite. Future Med. Chem.4(18),2241–2249 (2012).
    • 80  Guttman P, Ehrlich P. Uber die wirkung de methyleneblau bei malaria. Ber. Klin. Wochernschr.28,953–956 (1891).
    • 81  Layne WR, Smith RP. Methylene blue uptake and the reversal of chemically induced methemoglobinemias in human erythrocytes. J. Pharmacol. Exp. Ther.165,36–44 (1969).
    • 82  Blank O, Davioud-Charvet E, Elhabiri M. Interactions of the antimalarial drug methylene blue with methemoglobin and heme targets in Plasmodium falciparum: a physico-biochemical study. Antioxid. Redox Signal.17,544–554 (2012).
    • 83  Müller T, Johann L, Jannack B et al. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones–a new strategy to combat malarial parasites. J. Am. Chem. Soc.133,11557–11571 (2011).
    • 84  Johann L, Lanfranchi DA, Davioud-Charvet E et al. A physicobiochemical study with redox-cyclers as drugs against blood feeding-parasites. Curr. Pharm. Des.18,3539–3566 (2012).
    • 85  Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-Naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr. Pharm. Des.19,2512–2528 (2013).▪▪ Describes how redox cyclers reduced by NADPH-dependent flaovoenzymes perturb the redox equilibria in parasitized red blood cells.
    • 86  Davioud-Charvet E, Lanfranchi, DA. Subversive substrates of glutathione reductases from P. falciparum-infected red blood cells as antimalarial agents. In: Apicomplexan parasites – Molecular Approaches Toward Targeted Drug Development (Volume 2). Becker K (Ed.).Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011).
    • 87  Ehrhardt K, Davioud-Charvet E, Ke H et al. The mitochondrial electron transport chain is dispensable for the antimalarial activities of methylene blue and the lead 1,4-naphthoquinone 3-(4-[trifluoromethyl]benzyl)-menadione. Antimicrob. Agents Chemother.57(5),2114–2120 (2013).
    • 88  Nepveu F, Kim S, Boyer J et al. Synthesis and antiplasmodial activity of new indolone N-oxide derivatives. J. Med. Chem.53(2),699–714 (2010).▪▪ Describes the discovery and optimization of indolone-N-oxides as antimalarials.
    • 89  Tahar R, Vivas L, Basco L et al. Indolone N-oxide derivatives: in vitro activity against fresh clinical isolates of Plasmodium falciparum, stage specificity and in vitro interactions with established antimalarial drugs. J. Antimicrob. Chemother.66,2566–2572 (2011).
    • 90  Reybier K, Nguyen THY, Ibrahim H et al. Electrochemical behavior of indolone-N-oxides: relationship to structure and antiplasmodial activity. Bioelectrochem.88,57–64 (2012).▪ Describes the radical intermediates of indolone-N-oxides formed along reduction reaction.
    • 91  Nguyen THY, Ibrahim H, Reybier K et al. Pro-oxidant properties of indolone-N-oxides in relation to their antimalarial properties. J. Inorg. Biochem.126(9),7–16 (2013).
    • 92  Ibrahim H, Pantaleo A, Turrini F et al. Pharmacologicol properties of indolone-N-oxides controlled by a bioreductive transformation in red blood cells? MedChemComm.2(9),860–869 (2011).
    • 93  Pantaleo A, Ferru E, Vono R et al. New anti-antimarial indolone-N-oxides, generating stable radical species, promote destabilization of the host cell membrane at early stages of P.falciparum growth. Free Radical Biol. Med.52,527–536 (2012).▪▪ Demonstrates the profound destabilization of the Plasmodium falciparum red blood cell by indolone-N-oxides and the role of band 3 phosphorylation.
    • 94  Cui L, Wang Z, Miao J et al. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum.Mol. Microbiol.86(1),111–128 (2012).
    • 95  Ferry G, Hecht S, Berger S et al. Old and new inhibitors of quinone reductase 2. Chem. Biol. Interact.186,103–109 (2010).
    • 96  Graves PR, Kwiek JJ, Fadden P et al. Discovery of novel targets of quinolin drugs in the human purine binding proteome. Mol. Pharmacol.62,1364–1372 (2002).
    • 97  Reybier K, Perio P, Ferry G et al. Insights into the redox cycle of human quinone reductase 2. Free Rad. Res.45(10),1184–1195 (2011).
    • 98  Kwieck JJ, Haystead TAJ, Rudolph J. Kinetic mechanism of quinone oxidoreductase 2 and its inbition by antimalarial quinolones. Biochem.43,4538–4547 (2004).
    • 99  Leung KKK, Shilton BH. Chloroquine binding reveals flavin redox switch function of quinone reductase 2. J. Biochem. Chem.288(16),11242–11251 (2013).
    • 100  Bogan KL, Brenner C. Nicotinic acid, nicotinamide and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrients. Ann. Rev. Nutr.28,115–130 (2008).
    • 201  WHO: World Malaria Report (2011). www.who.int/malaria/world_malaria_report_2011
    • 202  WHO: World Malaria Report (2012). www.who.int/malaria/world_malaria_report_2012
    • 203  Medicines for Malaria Venture. www.mmv.org/research-development/rd-portfolio