We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Targeting mitochondrial function for the treatment of breast cancer

    Cláudia M Deus

    CNC - Center for Neuroscience & Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060–197 Cantanhede, Portugal

    ,
    Ana R Coelho

    CNC - Center for Neuroscience & Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060–197 Cantanhede, Portugal

    Department of Life Sciences, University of Coimbra, 3004–517 Coimbra, Portugal

    ,
    Teresa L Serafim

    CNC - Center for Neuroscience & Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060–197 Cantanhede, Portugal

    &
    Paulo J Oliveira

    *Author for correspondence:

    E-mail Address: pauloliv@cnc.uc.pt

    CNC - Center for Neuroscience & Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060–197 Cantanhede, Portugal

    Published Online:https://doi.org/10.4155/fmc.14.100

    There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest.

    References

    • 1 Libson S, Lippman M. A review of clinical aspects of breast cancer. Int. Rev. Psychiatry 26(1), 4–15 (2014).
    • 2 Ly D, Forman D, Ferlay J, Brinton LA, Cook MB. An international comparison of male and female breast cancer incidence rates. Int. J. Cancer 132(8), 1918–1926 (2013).
    • 3 Wang S, Bai L, Lu J, Liu L, Yang CY, Sun H. Targeting inhibitors of apoptosis proteins (IAPs) for new breast cancer therapeutics. J. Mammary Gland Biol. Neoplasia 17(3–4), 217–228 (2012).
    • 4 Budczies J, Denkert C, Muller BM et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue - a GC-TOFMS based metabolomics study. BMC Genomics 13, 334 (2012).
    • 5 Lill R, Hoffmann B, Molik S et al. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823(9), 1491–1508 (2012).
    • 6 Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 148(6), 1145–1159 (2012).•• Presents a current view of how mitochondrial function is associated with development of diseases.
    • 7 Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim. Biophys. Acta 1826(2), 370–384 (2012).
    • 8 Kumar S, Donti TR, Agnihotri N, Mehta K. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways. Int. J. Cancer 134(12), 2798–2807 (2013).
    • 9 Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. Curr. Genomics 14(3), 195–203 (2013).•• Shows the involvement of mitochondrial DNA in breast cancer.
    • 10 Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34), 4777–4786 (2006).
    • 11 Patra KC, Wang Q, Bhaskar PT et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2), 213–228 (2013).
    • 12 Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol. Cell Biol. 28(3), 1007–1017 (2008).
    • 13 Schinzel AC, Takeuchi O, Huang Z et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA 102(34), 12005–12010 (2005).
    • 14 Pastorino JG, Hoek JB. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr. Med. Chem. 10(16), 1535–1551 (2003).
    • 15 Ma Y, Bai RK, Trieu R, Wong LJ. Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim. Biophys. Acta 1797(1), 29–37 (2010).
    • 16 Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol Chem. 278(38), 36027–36031 (2003).
    • 17 Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell Biol. 28(2), 718–731 (2008).
    • 18 Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J. Aging Res. 407536 (2011).
    • 19 Pani G, Koch OR, Galeotti T. The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int. J. Biochem. Cell Biol. 41(5), 1002–1005 (2009).
    • 20 Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev. Res. (Philadelphia) 4(5), 638–654 (2011).
    • 21 Davison CA, Durbin SM, Thau MR et al. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res. 73(12), 3704–3715 (2013).
    • 22 Nyaga SG, Lohani A, Jaruga P, Trzeciak AR, Dizdaroglu M, Evans MK. Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer 6, 297 (2006).
    • 23 Popanda O, Seibold P, Nikolov I et al. Germline variants of base excision repair genes and breast cancer: a polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int. J. Cancer 132(1), 55–62 (2013).
    • 24 Kaipparettu BA, Ma Y, Wong LJ. Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids. Ann. NY Acad. Sci. 1201, 137–146 (2010).
    • 25 Radpour R, Fan AX, Kohler C, Holzgreve W, Zhong XY. Current understanding of mitochondrial DNA in breast cancer. Breast J. 15(5), 505–509 (2009).
    • 26 Masuda S, Kadowaki T, Kumaki N et al. Analysis of gene alterations of mitochondrial DNA D-loop regions to determine breast cancer clonality. Br. J. Cancer 107(12), 2016–2023 (2012).
    • 27 Ye C, Shu XO, Pierce L et al. Mutations in the mitochondrial DNA D-loop region and breast cancer risk. Breast Cancer Res. Treat. 119(2), 431–436 (2010).
    • 28 Barekati Z, Radpour R, Kohler C et al. Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations. Hum. Mol. Genet. 19(15), 2936–2946 (2010).
    • 29 Xu C, Tran-Thanh D, Ma C et al. Mitochondrial D310 mutations in the early development of breast cancer. Br. J. Cancer 106(9), 1506–1511 (2012).
    • 30 Santos GC Jr, Goes AC, Vitto H et al. Genomic instability at the 13q31 locus and somatic mtDNA mutation in the D-loop site correlate with tumor aggressiveness in sporadic Brazilian breast cancer cases. Clinics 67(10), 1181–1190 (2012).
    • 31 Czarnecka AM, Krawczyk T, Zdrozny M et al. Mitochondrial NADH-dehydrogenase subunit 3 (ND3) polymorphism (A10398G) and sporadic breast cancer in Poland. Breast Cancer Res. Treat. 121(2), 511–518 (2010).
    • 32 Czarnecka AM, Klemba A, Krawczyk T et al. Mitochondrial NADH-dehydrogenase polymorphisms as sporadic breast cancer risk factor. Oncol. Rep. 23(2), 531–535 (2010).
    • 33 Fendt L, Niederstatter H, Huber G et al. Accumulation of mutations over the entire mitochondrial genome of breast cancer cells obtained by tissue microdissection. Breast Cancer Res. Treat. 128(2), 327–336 (2011).
    • 34 Fan AX, Radpour R, Haghighi MM et al. Mitochondrial DNA content in paired normal and cancerous breast tissue samples from patients with breast cancer. J. Cancer Res. Clin. Oncol. 135(8), 983–989 (2009).
    • 35 Imanishi H, Hattori K, Wada R et al. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One 6(8), e23401 (2011).• Shows that the metastasis in human breast cancer cells are regulated by mitochondrial DNA mutations.
    • 36 Xia P, An HX, Dang CX et al. Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer 9, 454 (2009).
    • 37 Tipirisetti NR, Govatati S, Pullari P et al. Mitochondrial control region alterations and breast cancer risk: a study in South Indian population. PLoS One 9(1), e85363 (2014).
    • 38 Bai RK, Chang J, Yeh KT et al. Mitochondrial DNA content varies with pathological characteristics of breast cancer. J. Oncol. 496189 (2011).
    • 39 Yadava N, Schneider SS, Jerry DJ, Kim C. Impaired mitochondrial metabolism and mammary carcinogenesis. J. Mammary Gland Biol. Neoplasia 18(1), 75–87 (2013).•• Reviews how impaired mitochondrial metabolism can lead to mammary carginogenesis.
    • 40 Owens KM, Kulawiec M, Desouki MM, Vanniarajan A, Singh KK. Impaired OXPHOS complex III in breast cancer. PLoS One 6(8), e23846 (2011).
    • 41 Huttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv. Exp. Med. Biol. 748, 237–264 (2012).
    • 42 Putignani L, Raffa S, Pescosolido R et al. Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res. Treat. 110(3), 439–452 (2008).
    • 43 Lee SY, Jeon HM, Ju MK et al. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72(14), 3607–3617 (2012).
    • 44 Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1alpha and HIF2alpha in tumor-associated fibroblasts and human breast cancer cells. Cell Cycle 11(17), 3280–3289 (2012).
    • 45 Huang TC, Chang HY, Hsu CH, Kuo WH, Chang KJ, Juan HF. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J. Proteome Res. 7(4), 1433–1444 (2008).
    • 46 Pan J, Sun LC, Tao YF et al. ATP synthase ecto-alpha-subunit: a novel therapeutic target for breast cancer. J. Transl Med. 9, 211 (2011).
    • 47 Chiaradonna F, Moresco RM, Airoldi C et al. From cancer metabolism to new biomarkers and drug targets. Biotechnol. Adv. 30(1), 30–51 (2012).
    • 48 Ding Y, Liu Z, Desai S et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat. Commun. 3, 1271 (2012).
    • 49 Cadenas C, Vosbeck S, Hein EM et al. Glycerophospholipid profile in oncogene-induced senescence. Biochim. Biophys. Acta 1821(9), 1256–1268 (2012).
    • 50 Heerdt BG, Houston MA, Augenlicht LH. The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res. 65(21), 9861–9867 (2005).
    • 51 Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 87(1), 99–163 (2007).
    • 52 Domenis R, Comelli M, Bisetto E, Mavelli I. Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics. J. Bioenerg. Biomembr. 43(5), 493–505 (2011).
    • 53 Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 18(4), 165–173 (2008).
    • 54 Cheng G, Zielonka J, Dranka BP et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res. 72(10), 2634–2644 (2012).
    • 55 Cheng G, Zielonka J, Mcallister DM et al. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 13, 285 (2013).
    • 56 Wang F, Ogasawara MA, Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med. 31(1), 75–92 (2010).
    • 57 Smith RA, Hartley RC, Cocheme HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33(6), 341–352 (2012).
    • 58 Yousif LF, Stewart KM, Kelley SO. Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10(12), 1939–1950 (2009).
    • 59 Horobin RW, Trapp S, Weissig V. Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release 121(3), 125–136 (2007).
    • 60 D'souza GG, Wagle MA, Saxena V, Shah A. Approaches for targeting mitochondria in cancer therapy. Biochim. Biophys. Acta 1807(6), 689–696 (2011).
    • 61 Lao J, Madani J, Puertolas T et al. Liposomal Doxorubicin in the treatment of breast cancer patients: a review. J. Drug Deliv. 456409 (2013).
    • 62 Mathews AS, Ahmed S, Shahin M, Lavasanifar A, Kaur K. Peptide modified polymeric micelles specific for breast cancer cells. Bioconjug. Chem. 24(4), 560–570 (2013).
    • 63 Millard M, Pathania D, Shabaik Y, Taheri L, Deng J, Neamati N. Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 5(10), e13131 (2010).
    • 64 Murphy MP. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 1777(7–8), 1028–1031 (2008).
    • 65 Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 4(3), 95–99 (2002).
    • 66 Wisnovsky SP, Wilson JJ, Radford RJ et al. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol. 20(11), 1323–1328 (2013).
    • 67 Zubris KaV, Liu R, Colby A, Schulz MD, Colson YL, Grinstaff MW. In vitro activity of paclitaxel-loaded polymeric expansile nanoparticles in breast cancer cells. Biomacromolecules 14(6), 2074–2082 (2013).• Reveals efficacy of paclitazel in nanoparticles for breast cancer treatment.
    • 68 Goffney WH, Wong JH, Kern DH, Chase D, Krag DN, Storm FK. In vitro and in vivo cytotoxicity of rhodamine 123 combined with hyperthermia. Cancer Res. 50(3), 459–463 (1990).
    • 69 Modica-Napolitano JS, Weiss MJ, Chen LB, Aprille JR. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria. Biochem. Biophys. Res. Commun. 118(3), 717–723 (1984).
    • 70 Bernardo TC, Cunha-Oliveira T, Serafim TL et al. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition. Bioorg. Med. Chem. 21(23), 7239–7249 (2013).
    • 71 Modica-Napolitano JS, Brunelli BT, Koya K, Chen LB. Photoactivation enhances the mitochondrial toxicity of the cationic rhodacyanine MKT-077. Cancer Res. 58(1), 71–75 (1998).
    • 72 Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J. Natl Cancer Inst. 92(13), 1042–1053 (2000).
    • 73 Li X, Srinivasan SR, Connarn J et al. Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med. Chem. Lett. 4(11), 1042–1047 (2013).
    • 74 Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2(1), 29–42 (2002).
    • 75 Fantin VR, Leder P. F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res. 64(1), 329–336 (2004).
    • 76 Millard M, Gallagher JD, Olenyuk BZ, Neamati N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 56(22), 9170–9179 (2013).
    • 77 Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ. Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim. Biophys. Acta 1826(1), 238–254 (2012).
    • 78 Neuzil J, Weber T, Schroder A et al. Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J. 15(2), 403–415 (2001).
    • 79 Wang XF, Xie Y, Wang HG, Zhang Y, Duan XC, Lu ZJ. alpha-Tocopheryl succinate induces apoptosis in erbB2-expressing breast cancer cell via NF-kappaB pathway. Acta Pharmacol. Sin. 31(12), 1604–1610 (2010).
    • 80 Garvin S, Öllinger K, Dabrosin C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett. 231(1), 113–122 (2006).
    • 81 Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl Acad. Sci. USA 104(34), 13632–13637 (2007).
    • 82 Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res. 62(14), 3893–3903 (2002).
    • 83 Liu W, Gong Y, Li H et al. Arsenic trioxide-induced growth arrest of breast cancer MCF-7 cells involving FOXO3a and IkappaB kinase beta expression and localization. Cancer Biother. Radiopharm. 27(8), 504–512 (2012).
    • 84 Tuquet C, Dupont J, Mesneau A, Roussaux J. Effects of tamoxifen on the electron transport chain of isolated rat liver mitochondria. Cell Biol. Toxicol. 16(4), 207–219 (2000).
    • 85 Kallio A, Zheng A, Dahllund J, Heiskanen KM, Harkonen P. Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10(6), 1395–1410 (2005).
    • 86 Van Poznak C, Seidman AD, Reidenberg MM et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res. Treat. 66(3), 239–248 (2001).
    • 87 Meng Y, Tang W, Dai Y et al. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol. Cancer Ther. 7(7), 2192–2202 (2008).
    • 88 Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL. A translational study "case report" on the small molecule "energy blocker" 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J. Bioenerg. Biomembr. 44(1), 163–170 (2012).
    • 89 Chen Z, Zhang H, Lu W, Huang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim. Biophys. Acta 1787(5), 553–560 (2009).
    • 90 Brawer MK. Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol. 7 (Suppl. 7), S21–S26 (2005).
    • 91 Sordet O, Rebe C, Leroy I et al. Mitochondria-targeting drugs arsenic trioxide and lonidamine bypass the resistance of TPA-differentiated leukemic cells to apoptosis. Blood 97(12), 3931–3940 (2001).
    • 92 Murata T, Hibasami H, Maekawa S, Tagawa T, Nakashima K. Preferential binding of cisplatin to mitochondrial DNA and suppression of ATP generation in human malignant melanoma cells. Biochem. Int. 20(5), 949–955 (1990).
    • 93 Kang BH, Altieri DC. Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Oncogene 28(42), 3681–3688 (2009).
    • 94 Dong LF, Jameson VJ, Tilly D et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol Chem. 286(5), 3717–3728 (2011).
    • 95 Suy S, Mitchell JB, Ehleiter D, Haimovitz-Friedman A, Kasid U. Nitroxides tempol and tempo induce divergent signal transduction pathways in MDA-MB 231 breast cancer cells. J. Biol. Chem. 273(28), 17871–17878 (1998).
    • 96 Chamberlain GR, Tulumello DV, Kelley SO. Targeted delivery of Doxorubicin to mitochondria. ACS Chem. Biol. 8(7), 1389–1395 (2013).
    • 97 O'byrne KJ, Thomas AL, Sharma RA et al. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br. J. Cancer 87(1), 15–20 (2002).
    • 98 Ahn RW, Chen F, Chen H et al. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin. Cancer Res. 16(14), 3607–3617 (2010).
    • 99 Grobmyer SR, Zhou G, Gutwein LG, Iwakuma N, Sharma P, Hochwald SN. Nanoparticle delivery for metastatic breast cancer. Maturitas 73(1), 19–26 (2012).
    • 100 Sreekanth V, Bansal S, Motiani RK et al. Design, synthesis, and mechanistic investigations of bile acid–tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem. 24(9), 1468–1484 (2013).
    • 101 Jakel CE, Meschenmoser K, Kim Y, Weiher H, Schmidt-Wolf IG. Efficacy of a proapoptotic peptide towards cancer cells. In Vivo 26(3), 419–426 (2012).
    • 102 Kelley SO, Stewart KM, Mourtada R. Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations. Pharm. Res. 28(11), 2808–2819 (2011).
    • 103 Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol. 9(2), 323–333 (2014).
    • 104 Finichiu PG, James AM, Larsen L, Smith RA, Murphy MP. Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pK(a): implications for the design of mitochondrial probes and therapies. J. Bioenerg. Biomembr. 45(1–2), 165–173 (2013).• Presents the basis for the effective design of mitochondrial-targeted lipophilic cations.
    • 105 Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 49(1–2), 63–70 (2001).
    • 106 Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim. Biophys. Acta 1606(1–3), 137–146 (2003).
    • 107 Chunta JL, Vistisen KS, Yazdi Z, Braun RD. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells. PLoS One 7(5), e37471 (2012).
    • 108 Cheng G, Lopez M, Zielonka J et al. Mitochondria-targeted nitroxides exacerbate fluvastatin-mediated cytostatic and cytotoxic effects in breast cancer cells. Cancer Biol. Ther. 12(8), 707–717 (2011).
    • 109 Rohlena J, Dong LF, Kluckova K et al. Mitochondrially targeted alpha-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing. Antioxid. Redox Signal. 15(12), 2923–2935 (2011).
    • 110 Dong LF, Jameson VJ, Tilly D et al. Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic. Biol. Med. 50(11), 1546–1555 (2011).
    • 111 Ralph SJ, Neuzil J. Mitochondria as targets for cancer therapy. Mol. Nutr. Food Res. 53(1), 9–28 (2009).
    • 112 Barbi De Moura M, Vincent G, Fayewicz SL et al. Mitochondrial respiration--an important therapeutic target in melanoma. PLoS One 7(8), e40690 (2012).
    • 113 Neuzil J, Dyason JC, Freeman R et al. Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J. Bioenerg. Biomembr. 39(1), 65–72 (2007).
    • 114 Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8(7), 579–591 (2009).
    • 115 Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 15(8), 1318–1329 (2008).
    • 116 Dos Santos GA, Abreu e Lima RS, Pestana CR et al. (+)alpha-Tocopheryl succinate inhibits the mitochondrial respiratory chain complex I and is as effective as arsenic trioxide or ATRA against acute promyelocytic leukemia in vivo. Leukemia 26(3), 451–460 (2012).
    • 117 Sun RC, Board PG, Blackburn AC. Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Mol. Cancer 10, 142 (2011).
    • 118 Coutinho EM. Gossypol: a contraceptive for men. Contraception 65(4), 259–263 (2002).
    • 119 Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 15(4), 1126–1132 (2009).
    • 120 Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 25(34), 4633–4646 (2006).
    • 121 Sato-Tadano A, Suzuki T, Amari M et al. Hexokinase II in breast carcinoma: a potent prognostic factor associated with hypoxia-inducible factor-1alpha and Ki-67. Cancer Sci. 104(10), 1380–1388 (2013).
    • 122 Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin. Cancer Biol. 19(1), 17–24 (2009).
    • 123 Marini C, Salani B, Massollo M et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12(22), 3490–3499 (2013).
    • 124 Silver DP, Richardson AL, Eklund AC et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28(7), 1145–1153 (2010).
    • 125 Yde CW, Gyrd-Hansen M, Lykkesfeldt AE, Issinger OG, Stenvang J. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death. Mol. Cancer Ther. 6(6), 1869–1876 (2007).
    • 126 Yousif LF, Stewart KM, Kelley SO. Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10(12), 1939–1950 (2009).
    • 127 Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release 159(3), 393–402 (2012).
    • 128 Boddapati SV, D'Souza GG, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8(8), 2559–2563 (2008).
    • 129 Serafim TL, Oliveira PJ. Regulating mitochondrial respiration in cancer. In: Tumor Metabolome Targeting and Drug Development, Cancer Drug Discovery and Development, Kanner S (Ed.). Humana Press, NY, USA (2014).
    • 130 Tan AS, Baty JW, Berridge MV. The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochim. Biophys. Acta 1840(4), 1454–1463 (2014).
    • 131 Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9(6), 447–464 (2010).
    • 132 Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med. Chem. 5(1), 53–67 (2013).