We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops (Humulus lupulus L.)

    Diwakar Aggarwal

    Department of Biotechnology, Maharishi Markandeshwar (deemed to be University), Mullana, Ambala-133207, Haryana, India

    ,
    Sushil K Upadhyay

    Department of Biotechnology, Maharishi Markandeshwar (deemed to be University), Mullana, Ambala-133207, Haryana, India

    ,
    Raj Singh

    Department of Biotechnology, Maharishi Markandeshwar (deemed to be University), Mullana, Ambala-133207, Haryana, India

    &
    Hardeep S Tuli

    *Author for correspondence:

    E-mail Address: hardeep.biotech@gmail.com

    Department of Biotechnology, Maharishi Markandeshwar (deemed to be University), Mullana, Ambala-133207, Haryana, India

    Published Online:https://doi.org/10.4155/ppa-2020-0026

    There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent – aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Haseleu G, Intelmann D, Hofmann T. Structure determination and sensory evaluation of novel bitter compounds formed from β-acids of Hop (Humulus lupulus L.) upon wort boiling. Food Chem. 116, 71–81 (2009).
    • 2. Ocvirk M, Ogrinc N, Kosir IJ. Determination of the geographical and botanical origin of hops (Humulus lupulus L.) using stable isotopes of C, N, and S. J. Agri. Food Chem. 66(8), 2021–2026 (2018).
    • 3. Intelmann D, Kummerlowe G, Haseleu G et al. Structures of storage-induced transformation products of the beer’s bitter principles, revealed by sophisticated NMR spectroscopic and LC-MS techniques. Chem. Eur. J. 15, 13047–13058 (2009).
    • 4. Eyres G, Dufour JP. Hop essential oil: analysis, chemical composition and odor characteristics. Beer Health Dis. Prevent. 239–254 (2009).
    • 5. Hieronymus S. For the Love of Hops: The Practical Guide to Aroma, Bitterness and the Culture of Hops. Brewers Publications, CA, USA (2012).
    • 6. Flythe MD, Kagan IA, Wang Y et al. Hops (Humulus lupulus L.) bitter acids: modulation of rumen fermentation and potential as an alternative growth promoter. Front. Vet. Sci. 4, 131 (2017).
    • 7. Dresel M, Vogt C, Dunkel A et al. The bitter chemodiversity of hops (Humulus lupulus L.). J. Agri. Food Chem. 4(41), 7789–7799 (2016). •• Highlights the chemistry of xanthohumol (XN) and its derivatives.
    • 8. Austin MB, Noel JP. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).
    • 9. Abe I, Morita H. Cheminform abstract: structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat. Prod. Rep. 27(6), 809–838 (2010).
    • 10. Frolich S, Schubert C, Bienzle U et al. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J. Antimicrob. Chemother. 55(6), 883–887 (2005).
    • 11. Possemiers S, Verstraete W, De Wiele TV. Estrogenicity of beer: the role of intestinal bacteria in the activation of the beer flavonoid isoxanthohumol. Beer Health Dis. Prevent. 523–539 (2009).
    • 12. Proestos C, Komaitis M. Antioxidant capacity of hops. Beer Health Dis. Prevent. 467–474 (2009).
    • 13. Deeb D, Gao X, Jiang H et al. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res. 30, 3333–3339 (2010).
    • 14. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145, 1215–1229 (2013).
    • 15. Jiang CH, Sun TL, Xiang DX et al. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 9, 530 (2018). • Provides information on mechanism of action of XN.
    • 16. Reitman ZJ, Winkler F, Elia AEH. New directions in the treatment of glioblastoma. Semin. Neurol. 38, 50–61 (2018).
    • 17. Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116(3), 383–396 (2008).
    • 18. Zanoli P, Zavatti M. Neuropharmacological activity of Humulus lupulus L. Beer Health Dis. Prevent. 549–556 (2009).
    • 19. Aronson JK. Meyler’s Side Effects of Drugs: The International Encyclopedia of Adverse Drug Reactions and Interactions (16th Edition). Aronson JK (Ed.). Elsevier Science, USA, 7674 (2015).
    • 20. Bartmańska A, Wałecka-Zacharska E, Tronina T et al. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules 23, 2059 (2018).
    • 21. Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health. Phytochemistry 65(10), 1317–1330 (2004). •• Highlights the various therapeutic activities of XN.
    • 22. Lupinacci E, Meijerink J, Vincken JP et al. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-α release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J. Agri. Food Chem. 57(16), 7274–7281 (2009).
    • 23. Lee YM, Hsieh KH, Lu WJ et al. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), prevents platelet activation in human platelets. Evid. Based Complement. Alternat. Med. 2, 10 (2012).
    • 24. Yasukawa K, Takeuchi M, Takido M. Humulon, a bitter in the hop, inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 52(2), 156–158 (1995).
    • 25. Wesolowska O, Gasiorowska J, Petrus J et al. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Biochem. Biophys. Acta 1838, 173–184 (2014).
    • 26. Langezaal CR, Chandra A, Scheffer JJ. Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm. Weekbl. Sci. 14(6), 353–356 (1992).
    • 27. Simpson WJ, Smith AR. Factors affecting antibacterial activity of hop compounds and their derivatives. J. Appl. Bacteriol. 72(4), 327–334 (1992).
    • 28. Sheu JR, Lee CR, Lin C et al. Mechanisms involved in the antiplatelet activity of Staphylococcus aureus lipoteichoic acid in human platelets. J. Thromb. Haemost. 83(5), 777–784 (2000).
    • 29. Stevens JF, Miranda CL, Frei B et al. Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids: the alpha,beta-unsaturated keto functionality of 2′-hydroxychalcones as a novel antioxidant pharmacophore. Chem. Res. Toxicol. 16(10), 1277–1286 (2003).
    • 30. Schempp H, Vogel S, Hückelhoven R et al. Re-evaluation of superoxide scavenging capacity of xanthohumol. Free Radic. Res. 44, 1435–1444 (2010).
    • 31. Hirata H, Yimin Segawa S et al. Xanthohumol prevents atherosclerosis by reducing arterial cholesterol content via CETP and apolipoprotein E in CETP-transgenic mice. PLoS ONE 7, e49415 (2012).
    • 32. Henderson MC, Miranda CL, Stevens JF et al. In vitro inhibition of human P450 enzymes by prenylated flavonoids from hops, Humulus lupulus. Xenobiotica 30(3), 235–251 (2000).
    • 33. Mannering GJ, Shoeman JA, Shoeman DW. Effects of colupulone, a component of hops and brewers yeast, and chromium on glucose tolerance and hepatic cytochrome P450 in nondiabetic and spontaneously diabetic mice. Biochem. Biophys. Res. Commun. 200(3), 1455–1462 (1994).
    • 34. Mannering GJ, Shoeman JA. Murine cytochrome P4503A is induced by 2-methyl-3-buten-2-ol, 3-methyl- 1-pentyn-3-ol (meparfynol), and tert-amyl alcohol. Xenobiotica 26(5), 487–493 (1996).
    • 35. Guo J, Nikolic D, Chadwick LR et al. Identification of human hepatic cytochrome P450 enzymes involved in the metabolism of 8-prenylnaringenin and isoxanthohumol from hops (Humulus lupulus L.). Drug Metab. Dispos. 34, 1152–1159 (2006).
    • 36. Miranda CL, Yang YH, Henderson MC et al. Prenylflavonoids from hops inhibit the metabolic activation of the carcinogenic heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline, mediated by cDNA-expressed human CYP1A2. Drug Metab. Dispos. 28(11), 1297–1302 (2000).
    • 37. Miura Y, Hosono M, Oyamada C et al. Dietary isohumulones, the bitter components of beer, raise plasma HDL cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARa activations in C57BL/6 mice. Br. J. Nutr. 93, 559–567 (2005).
    • 38. Hänsel R, Wohlfart R, Coper H. Sedative-hypnotic compounds in the exhalation of hops, II. Z. Naturforsch. 35(11-12), 1096–1097 (1980).
    • 39. Park SH, Sim YB, Kang YJ et al. Hop extract produces antinociception by acting on opioid system in mice. Korean J. Physiol. Pharmacol. 16(3), 187–192 (2012).
    • 40. Hänsel R, Wohlfart R, Schmidt H. The sedative-hypnotic principle of hops. 3. Communication: contents of 2-methyl-3-butene-2-ol in hops and hop preparations. Planta Med. 45, 224–228 (1982).
    • 41. De Keukeleire J, Ooms G, Heyerick A et al. Formation and accumulation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.). J. Agri. Food Chem. 16, 4436–4441 (2003).
    • 42. De Keukeleire J, Janssens I, Heyerick A et al. Relevance of organic farming and effect of climatological conditions on the formation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). J. Agr. Food Chem. 55, 61–66 (2007).
    • 43. Zhang X, Li X, Liu N et al. The anticonvulsant effects of baldrinal on pilocarpine-induced convulsion in adult male mice. Molecules 24(8), 1617 (2019).
    • 44. Brodziak-Jarosz L, Fujikawa Y, Pastor-Flores D et al. A click chemistry approach identifies target proteins of xanthohumol. Mol. Nutr. Food Res. 60, 737–748 (2016).
    • 45. Magalhaes PJ, Carvalho DO, Cruz JM et al. Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat. Prod. Commun. 4, 591–610 (2009). • Discusses the various health benefits of XN.
    • 46. Nuti E, Bassani B, Camodeca C et al. Synthesis and antiangiogenic activity study of new hop chalcone xanthohumol analogues. Eur. J. Med. Chem. 138, 890–899 (2017).
    • 47. Biendl M, Pinzl C. Hops and health. In: Effects – Efficacy of Individual Hop Components. Biendl MPinzl C (Eds). German Hop Museum, Wolnzach, Germany, 49–76 (2008).
    • 48. Yajima H, Ikeshima E, Shiraki M et al. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor alpha and gamma and reduce insulin resistance. J. Biol. Chem. 279(32), 33456–33462 (2004).
    • 49. Chadwick LR, Nikolic D, Burdette JE et al. Estrogens and congeners from spent hops (Humulus lupulus). J. Nat. Prod. 67(12), 2024–2032 (2004).
    • 50. Chadwick LR, Pauli GF. Farnsworth. The pharmacognosy of Humulus lupulus L. (hops) with an emphasis on estrogenic properties. Phytomedicine 13(1-2), 119–131 (2006).
    • 51. van Breemen RB, Yuan Y, Banuvar S et al. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol. Nutr. Food Res. 58, 1962–1969 (2014).
    • 52. Liu J, Burdette JE, Xu H et al. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agri. Food Chem. 49(5), 2472–2479 (2001).
    • 53. Logan IE, Miranda CL, Lowry MB et al. Antiproliferative and cytotoxic activity of xanthohumol and its non-estrogenic derivatives in colon and hepatocellular carcinoma cell lines. Int. J. Mol. Sci. 20, 1203 (2019).
    • 54. Possemiers S, Bolca S, Grootaert C et al. The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J. Nutr. 136(7), 1862–1867 (2006).
    • 55. Possemiers S, Rabot S, Espin JC et al. Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J. Nutr. 138, 1310–1316 (2008).
    • 56. Stulikova K, Karabin M, Nespor J et al. Therapeutic perspectives of 8-prenylnaringenin, a potent phytoestrogen from hops. Molecules 23(3), 660 (2018).
    • 57. Paraiso IL, Plagmann LS, Yang L et al. Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus. Mol. Nutr. Food Res. 63, e1800923 (2019).
    • 58. Franco L, Sanchez C, Bravo R et al. The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 99(2), 133–139 (2012).
    • 59. Vonderheid-Guth B, Todorova A, Brattstrom A et al. Pharmacodynamic effects of valerian and hops extract combination (Ze 91019) on the quantitative-topographical EEG in healthy volunteers. Eur. J. Med. Res. 5(4), 139–144 (2000).
    • 60. Liu M, Hansen PE, Wang G et al. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20, 754–779 (2015).
    • 61. Lecce G, Meduri G, Ancelin M et al. Presence of estrogen receptor beta in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J. Clin. Endocrinol. Metab. 86, 1379–1386 (2001).
    • 62. Schellenberg R, Sauer S, Abourashed EA. The fixed combination of valerian and hops (Ze91019) acts via a central adenosine mechanism. Planta Med. 70(7), 594–597 (2004).
    • 63. Schiller H, Forster A, Vonhoff C et al. Sedating effects of Humulus lupulus L. extracts. Phytomedicine 13(8), 535–541 (2006).
    • 64. Dimpfel W, Pischel I, Lehnfeld R. Effects of lozenge containing lavender oil, extracts from hops, lemon balm and oat on electrical brain activity of volunteers. Eur. J. Med. Res. 9(9), 423–431 (2004).
    • 65. Wohlfart R, Wurm G, Hansel R et al. Detection of sedative-hypnotic active ingredients in hops. 5. Degradation of bitter acids to 2-methyl-3-buten-2-ol, a hop constituent with sedative-hypnotic activity. Arch. Pharm. (Weinheim) 316(2), 132–137 (1983).
    • 66. Legette L, Ma L, Reed RL et al. Pharmacokinetics of xanthohumol and metabolites in rats after oral and intravenous administration. Mol. Nutr. Food Res. 56, 466–474 (2012).
    • 67. Kac J, Plazar J, Mlinarič A et al. Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine 15, 216–220 (2008).
    • 68. Salehi B, Upadhyay S, Erdogan OI et al. Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules 9, 738 (2019).
    • 69. Aggarwal V, Kashyap D, Sak K et al. Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int. J. Mol. Sci. 20(3), 656 (2019).
    • 70. Kashyap D, Sharma A, Sak K et al. Fisetin: a bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 194, 75–87 (2018).
    • 71. Tuli HS, Tuorkey MJ, Thakral F et al. Molecular mechanisms of action of genistein in cancer: recent advances. Front. Pharmacol. 10, 1336 (2019).
    • 72. Kashyap D, Sharma A, Tuli HS et al. Molecular targets of celastrol in cancer: recent trends and advancements. Crit. Rev. Oncol. Hematol. 128, 70–81 (2018).
    • 73. Sharma A, Ghani A, Sak K et al. Probing into therapeutic anti-cancer potential of apigenin: recent trends and future directions. Recent Pat. Inflamm. Allergy Drug Discov. 13(2), 124–133 (2019).
    • 74. Chaudhary A, Jaswal VS, Choudhary S et al. Ferulic acid: a promising therapeutic phytochemical and recent patents advances. Recent Pat. Inflamm. Allergy Drug Discov. 13(2), 115–123 (2019).
    • 75. Yadav P, Jaiswal V, Sharma A et al. Celastrol as a pentacyclic triterpenoid with chemopreventive properties. Pharm. Pat. Anal. 7(4), 155–167 (2018).
    • 76. Tuli HS, Kashyap D, Sharma AK, Sandhu SS. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci. 135, 147–157 (2015).
    • 77. Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 146, 201–213 (2016).
    • 78. Lee IS, Lim J, Gal J et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int. 58(2), 153–160 (2011).
    • 79. Weiskirchen R, Mahli A, Weiskirchen S et al. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol. 6, 140 (2015).
    • 80. Luzak B, Kassassir H, Rój E, Stanczyk L, Watala C, Golanski J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem. 123, 54–60 (2017).
    • 81. Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int. J. Biol. Sci. 15, 2497–2508 (2019)
    • 82. Mishra AP, Salehi B, Sharifi-Rad M et al. . Programmed cell death, from a cancer perspective: an overview. Mol. Diagn. Ther. 22(3), 281–295 (2018).
    • 83. Sławińska-Brych A, Zdzisińska B, Czerwonka A et al. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim. Biophys. Acta 1863(11), 129408 (2019).
    • 84. Kang Y, Park MA, Heo SW et al. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells. Biochim. Biophys. Acta 1830(3), 2638–2648 (2013).
    • 85. Saito K, Matsuo Y, Imafuji H et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci. 109(1), 132–140 (2018).
    • 86. Viola K, Kopf S, Rarova L et al. Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch. Toxicol. 87(7), 1301–1312 (2013).
    • 87. Lee IS, Lim J, Gal J et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem. Int. 58(2), 153–160 (2011).
    • 88. Gupta H, Kumar S, Roy SK, Gaud RS. Patent protection strategies. J. Pharm. Bioall. Sci. 2, 2–7 (2010)
    • 89. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J. Health Econ. 22(2), 151–185 (2003). •• Highlights importance of patents in pharmaceutical world.
    • 90. Grubb PW. Patents for chemicals, pharmaceuticals and biotechnology: Fundamentals of Global Law, Practice and Strategy (2nd Edition). Oxford University Press, London, UK (1999).
    • 91. Gersten DM. The quest for market exclusivity in biotechnology: navigating the patent minefield. NeuroRx 2(4), 572–578 (2005).
    • 92. Miranda CL, Stevens JF, Ivanov V et al. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agri. Food Chem. 48(9), 3876–3884 (2000).
    • 93. Gerhäuser C. Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 49(9), 827–831 (2005).
    • 94. Legette LL, Luna AY, Reed RL et al. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry 91, 236–241 (2013).
    • 95. Dorn C, Massinger S, Wuzik A et al. Xanthohumol suppresses inflammatory response to warm ischemia-reperfusion induced liver injury. Exp. Mol. Pathol. 94(1), 10–16 (2013).
    • 96. Erkkola R, Vervarcke S, Vansteelandt S et al. A randomized, double-blind, placebo-controlled, cross-over pilot study on the use of a standardized hop extract to alleviate menopausal discomforts. Phytomedicine 17(6), 389–396 (2010).
    • 97. Ambrož M, Lněničková K, Matoušková P et al. Antiproliferative effects of hop-derived prenylflavonoids and their influence on the efficacy of oxaliplatine, 5-fluorouracil and irinotecan in human colorectal C cells. Nutrients 11(4), 879 (2019).
    • 98. Gerhäuser C. Beer constituents as potential cancer chemopreventive agents. Eur. J. Cancer 41(13), 1941–1954 (2005).
    • 99. Jia Q, Jiao P, Yimam M et al. : US20200206292A1 (2020).
    • 100. Brownell LA, Hong MCMF, Hyun EJ et al. : AU2019201188A1 (2019).
    • 101. Brownell LA, Chu M, Hong MF et al. : AU2020201457A1 (2020).
    • 102. Xiaolan W, Chen Y, Ming L: CN110754664A (2019).
    • 103. Yuhua T: 111195334A (2020).
    • 104. Wang L, Zhang J: 111281851A (2019).
    • 105. Yamaguchi N, Satoh-Yamaguchi K, Ono M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 16, 369–376 (2009).
    • 106. Fukizawa S, Takagi R: WO2020116382A1 (2019).
    • 107. Fukizawa S: WO2020116381A1 (2019).
    • 108. Fukizawa S, Risa Y, Takagi et al. : WO2020116383A1 (2019).
    • 109. Adnan MMM, Polisetti DR, Kassis JN et al. : US20200148673A1 (2020).
    • 110. Werner-Backachim W, Wunderrich Z: JP2020090501A (2019).
    • 111. Hamid R, Noel S, Maria N et al. : US20200120909A1 (2019).
    • 112. Young CL, Su YY, Su HY et al. : WO2020106084A1 (2019).
    • 113. Marcel B, Thérèse D: WO2020094767A1 (2019).
    • 114. Ingo L, Johannes G, Vera P et al. : WO2020084105A2 (2019).
    • 115. Ivan G: WO2020086820A1 (2019).
    • 116. Alain D, Baron, Nigel RA, Beeley et al. : AU2019253780A1 (2019).
    • 117. Durham L: JP2020059711A (2019).
    • 118. Jiang P, Liu X, Bai J et al. : 110613706A (2019).
    • 119. Akihiro TM, Yuko T, Yoshinaga et al. : WO2020067453A1 (2019).
    • 120. Chen Z, Sang F, Kong L et al. : 110590520A (2019).
    • 121. Otis CA: US20200016131A1 (2019).
    • 122. Yi R: US20200165608A1 (2019).
    • 123. Kenwaljit SB: WO2020061584A1 (2019).
    • 124. Bjoern CK: US20190381023A1 (2019).
    • 125. Nikhat C, Jennifer JR: WO2020033796A1 (2019).
    • 126. Shinya MF, Kenichi Y, Wakabayashi: WO2020031957A1 (2019).
    • 127. Shinya FY, Nonaka M, Yamashita: WO2020031952A1 (2019).
    • 128. Junki Y, Kusotaro T: WO2020031961A1 (2019).
    • 129. Cong YJ, Chunpeng Z, Xueqiang Zh et al. : 110251436A (2019).
    • 130. Peter S, Talyn S, Paul D et al. : WO2020027665A1 (2019).
    • 131. Junmo Y, Park Y, Kim Y et al. : KR102074614B1 (2019).
    • 132. Geoffrey A, Von M, Jared S et al. : US20200093851A1 (2019).
    • 133. Jeffrey ES: WO2019210073A1 (2019).
    • 134. Kim JSS, Do K: KR102015854B1 (2019).
    • 135. Rio MJD, Julia CW, Lopez-Rios L et al. : US20190216872A1 (2019).
    • 136. Gokaraju GR, Gokaraju VKRR, Golakoti RRGT et al. : WO2019171397A1 (2019).
    • 137. Baillie RF, Davis PF, Tinte I, Tan ST: US20200041521A1 (2019).
    • 138. Yongbo Z, Ping L, Xiaoshuang L: 109589331A (2019).
    • 139. Behnam D: WO2020011402A1 (2019).