We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Bioformulative concepts on intracellular organ specific bioavailability

Nikhitha K Shanmukhan

Department of Pharmaceutics, JSS College of Pharmacy, Udagamund, JSS Academy of Higher Education & Research, Mysuru, India

,
Arun Radhakrishnan

*Author for correspondence: Tel.: +91 740 222 2019;

E-mail Address: arunpharma93@gmail.com

;

E-mail Address: arun20rnair@gmail.com

Department of Pharmaceutics, JSS College of Pharmacy, Udagamund, JSS Academy of Higher Education & Research, Mysuru, India

,
Vinoth Maniarasan

Janssen Pharmaceutical Companies, Johnson & Johnson Private Limited, Chennai, India

,
Gowthamarajan Kuppusamy

Department of Pharmaceutics, JSS College of Pharmacy, Udagamund, JSS Academy of Higher Education & Research, Mysuru, India

&
Samuel Gideon

Department of Pharmaceutics, JSS College of Pharmacy, Udagamund, JSS Academy of Higher Education & Research, Mysuru, India

Published Online:https://doi.org/10.4155/tde-2018-0032

Bioavailability is an ancient but effective terminology by which the entire therapeutic efficacy of a drug directly or indirectly relays. Despite considering general plasma bioavailability, specific organ/tissue bioavailability will pave the path to broad spectrum dose calculation. Clear knowledge and calculative vision on bioavailability can improve the research and organ-targeting phenomenon. This article comprises a detailed introduction on bioavailability along with regulatory aspects, kinetic data and novel bioformulative approaches to achieve improved organ specific bioavailability, which may not be readily related to blood plasma bioavailability.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci. Rep. 7, 43047 (2017). •• Clear and detailed explanation of intracellular bioavailability.
  • 2 Stepensky D. Quantitative aspects of intracellularly-targeted drug delivery. Pharm. Res. 27(12), 2776–2280 (2010).
  • 3 El-Kattan AF. Oral Bioavailability Assessment: Basics and Strategies for Drug Discovery and Development. John Wiley & Sons, USA (2017).
  • 4 Matsuda Y, Konno Y, Satsukawa M et al. Assessment of intestinal availability of various drugs in oral absorption process using portal vein cannulated rats. 40(12), 2231–2238 (2012).
  • 5 Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 24(1), 1 (2009).
  • 6 Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J. Pharm. Sci. 91(1), 18–31 (2002).
  • 7 Hamidi M, Azadi A, Rafiei P, Ashrafi H. A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit. Rev. Ther. Drug Carrier Syst. 30(5), 435–467 (2013).
  • 8 Fuller MAA. Bioavailability – a brief history. Presented at: Proceedings of the 9th International Symposium on Digestive Physiology in Pigs. 1, 183–198 (2003). • Detailed history of bioavailability is given in the paper.
  • 9 Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies. Chapman and Hall/CRC, London, New York (2008).
  • 10 Jambhekar Sunil S, Breen Philip J. Basic Pharmacokinetics Vol. 76. Pharmaceutical Press, London, UK (2009).
  • 11 Food and Drug Administration. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products – general considerations. US Food and Drug Administration, Washington, DC, USA (2003).
  • 12 Central Drugs Standard Control Organization. Guidance for Bioavailability and Bioequivalence Studies. Central Drugs Standard Control Organization, New Delhi (2015).
  • 13 Committee for Medicinal Products for Human Use. Guideline on the Investigation of Bioequivalence. European Medicines Agency, London, UK (2010).
  • 14 Ahmed TA. Pharmacokinetics of drugs following IV Bolus, IV infusion, and oral administration. In: Basic Pharmacokinetic Concepts and Some Clinical Applications. InTech, London UK (2015).
  • 15 Aungst BJ. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J. Pharm. Sci. 106(4), 921–929 (2017). •• The concept of bioavailability and its significance in drug development and formulation in detail can be obtained from this paper.
  • 16 Burton PS, Goodwin JT, Vidmar TJ, Amore BM. Predicting drug absorption: how nature made it a difficult problem. J. Pharmacol. Exp. Ther. 303(3), 889–895 (2002).
  • 17 Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert. Opin. Drug Metab. Toxicol. 3(4), 469–489 (2007).
  • 18 Lawrence XY, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug. Deliv. Rev. 19(3), 359–376 (1996).
  • 19 Gavhane YN, Yadav AV. Loss of orally administered drugs in GI tract. Saudi Pharm. J. 20(4), 331–344 (2012).
  • 20 Dahan A, Miller JM. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 14(2), 244–251 (2012).
  • 21 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23(1–3), 3–25 (1997).
  • 22 Liu S, Tam D, Chen X, Pang KS. P-Glycoprotein and an unstirred water layer barring digoxin absorption by the perfused rat small intestine preparation: induction studies with pregnenolone-16α-carbonitrile (PCN). Drug Metab. Dispos. 34(9), 1468–1479 (2006).
  • 23 Stanfield CL. Principles of Human Physiology. Pearson Higher Ed., USA (2012).
  • 24 Menard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal. Immunol. 3(3), 247 (2010).
  • 25 Avdeef A. Absorption and Drug Development: Solubility, Permeability, and Charge State. John Wiley & Sons, USA (2012).
  • 26 Lawler JW, Slayter HS, Coligan JE. Isolation and characterization of a high molecular weight glycoprotein from human blood platelets. J. Biol. Chem. 253(23), 8609–8616 (1978).
  • 27 Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta 1778(3), 588–600 (2008).
  • 28 Elliott RL, Amidon GL, Lightfoot EN. A convective mass transfer model for determining intestinal wall permeabilities: laminar flow in a circular tube. J. Theor. Biol. 87(4), 757–771 (1980).
  • 29 Chiou WL. Effect of ‘unstirred’ water layer in the intestine on the rate and extent of absorption after oral administration. Biopharm. Drug Dispos. 15(8), 709–717 (1994).
  • 30 Smithson KW, Millar DB, Jacobs LR, Gray GM. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat?. Science 214(4526), 1241–1244 (1981).
  • 31 Loftsson T. Drug permeation through biomembranes: cyclodextrins and the unstirred water layer. Die Pharmazie. 67(5), 363–370 (2012).
  • 32 Rothblat GH, Mahlberg FH, Johnson WJ, Phillips MC. Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J. Lipid. Res. 33(8), 1091–1097 (1992).
  • 33 Seithel A, Karlsson J, Hilgendorf C, Björquist A, Ungell AL. Variability in mRNA expression of ABC-and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur. J. Pharm. Sci. 28(4), 291–299 (2006).
  • 34 Tsuji A, Tamai I. Carrier-mediated intestinal transport of drugs. Pharm. Res. 13(7), 63–77 (1996).
  • 35 Dean M, Allikmets R. Complete characterization of the human ABC gene family. J. Bioenerg. Biomembr. 33(6), 475–479 (2001).
  • 36 Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur. J. Pharm. Sci. 12(1), 3–12 (2000).
  • 37 Kwan KC. Oral bioavailability and first-pass effects. Drug Metab. Dispos. 25(12), 1329–1336 (1997). • The effect of first pass metabolism in bioavailability can be understood from the article.
  • 38 Burroughs AK. The hepatic artery, portal venous system and portal hypertension: the hepatic veins and liver in circulatory failure. In: Sherlock's Diseases of the Liver and Biliary System (Twelfth Edition, Chapter 9). Dooley JS, Lok ASF, Burroughs AK, Jenny HE (Eds). Wiley, London, UK, 152–209 (2011).
  • 39 Ramaiah SK, Banerjee A. Liver toxicity of chemical warfare agents. In: Handbook of Toxicology of Chemical Warfare Agents. Academic Press, Elsevier Health Sciences, USA, 549–560 (2009).
  • 40 Washabau RJ, Day MJ. Canine and Feline Gastroenterology – E-Book. Elsevier Health Sciences, USA (2012).
  • 41 Iwatsubo T, Hirota N, Ooie T et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol. Ther. 73(2), 147–171 (1997).
  • 42 Nagar S, Argikar UA, Tweedie DJ. Enzyme kinetics in drug metabolism: fundamentals and applications. In: Enzyme Kinetics in Drug Metabolism. Humana Press, Totowa, N.J.S., 1–6 (2014).
  • 43 Ridgway D, Tuszynski JA, Tam YK. Reassessing models of hepatic extraction. J. Biol. Phys. 29(1), 1–21 (2003).
  • 44 Thummel KE, Kunze KL, Shen DD. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction. Adv. Drug Deliv. Rev. 27(2–3), 99–127 (1997).
  • 45 Shargel L, Andrew BC, Wu-Pong S. Applied Biopharmaceutics & Pharmacokinetics. Appleton & Lange, CA, USA (1999).
  • 46 Pond SM, Tozer TN. First-pass elimination basic concepts and clinical consequences. Clin. Pharmacokinet. 9(1), 1–25 (1984).
  • 47 Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein; time for a change of strategy?. Drug Metabol. Dispos. 42(4), 623–631 (2014).
  • 48 Hoosain FG, Choonara YE, Tomar LK et al. Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant schizophrenia therapy. BioMed. Res. Int. 2015, 484963 (2015).
  • 49 Russel FG. Transporters: importance in drug absorption, distribution, and removal. In: Enzyme-and transporter-based drug-drug interactions. Springer, NY, USA, 27–49 (2010).
  • 50 Yin N, Brimble MA, Harris PW, Wen J. Enhancing the oral bioavailability of peptide drugs by using chemical modification and other approaches. Med. Chem. 4, 763–769 (2014).
  • 51 Drug Distribution to Tissues. By Jennifer LE, PharmD, MAS, BCPS-ID, FIDSA, FCCP, FCSHP, Professor of Clinical Pharmacy and Director of Experiential Education in Los Angeles, Skaggs School of Pharmacy and Pharmaceutical Sciences. University of California San Diego, CA, USA (2018).
  • 52 Koda-Kimble MA. Koda-Kimble and Young's applied therapeutics: the clinical use of drugs. Lippincott Williams & Wilkins, USA (2012).
  • 53 Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin. Microbiol. Rev. 26(2), 274–288 (2013). •• Significance of intracellular bioavailability in case of particular drugs can be understood from the study.
  • 54 Klotz U. Pathophysiological and disease-induced changes in drug distribution volume: pharmacokinetic implications. Clin. Pharmacokinet. 1(3), 204–218 (1976).
  • 55 Mateus A, Gordon LJ, Wayne GJ et al. Prediction of intracellular exposure bridges the gap between target-and cell-based drug discovery. Proc. Natl Acad. Sci. USA 114(30), E6231-9 (2017). •• Explain the significance and need of intracellular bioavailability measurement is explained in detail.
  • 56 Chien HC, Zur AA, Maurer TS et al. Rapid method to determine intracellular drug concentrations in cellular uptake assays: application to metformin in organic cation transporter 1-transfected human embryonic kidney 293 Cells. Drug Metab. Dispos. 44, 356–364 (2016). • Detailed explanation about the method of determination of intracellular bioavailability and its limitations can be identified from the manuscript.
  • 57 Morgan Edward T, Lee Choon-Myung, Nyagode Beatrice A. Regulation of Drug Metabolizing Enzymes and Transporters in Infection, Inflammation, and Cancer. Encyclopedia of Drug Metabolism and Interactions. Wiley, USA, 1–45 (2011).
  • 58 Zhuanga Xiaomei, Lub Chuang. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B. 6(5), 430–440 (2016).
  • 59 Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics. Syst. Pharmacol. 2(8), 1–2 (2013).
  • 60 Kuepfer L, Niederalt C, Wendl T et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT. Pharmacometrics Syst. Pharmacol. 5(10), 516–531 (2016).
  • 61 Poirier A, Funk C, Lavé T. Role of PBPK modeling in drug discovery: opportunities and limitations. In: PAMM: Proceedings in Applied Mathematics and Mechanics. Wiley-Vch Verlag, Berlin, Germany, 7(1), 1121907–1121908 (2007).
  • 62 Whiting B, Kelman AW, Grevel J. Population pharmacokinetics theory and clinical application. Clin. Pharmacokinet. 11(5), 387–401 (1986).
  • 63 Vozeh S, Maitre PO, Stanski DR. Evaluation of population (NONMEM) pharmacokinetic parameter estimates. J. Pharmacokinet. Biopharm. 18(2), 161–173 (1990).
  • 64 Samara E, Granneman R. Role of population pharmacokinetics in drug development. Clin. Pharmacokinet. 32(4), 294–312 (1997).
  • 65 Teuscher KB, Zhang M, Ji H. A versatile method to determine the cellular bioavailability of small-molecule inhibitors. J. Med. Chem. 60(1), 157–169 (2017).
  • 66 Ponchel G, Irache JM. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug Deliv. Rev. 34(2–3), 191–219 (1998).
  • 67 Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface. 10(82), 20120939 (2013).
  • 68 Roger E, Kalscheuer S, Kirtane A et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol. Pharm. 9(7), 2103–2110 (2012).
  • 69 Fadeel B, Pietroiusti A, Shvedova AA. Adverse Effects of Engineered Nanomaterials: Exposure, Toxicology, and Impact on Human Health. Academic Press, London, UK (2017).
  • 70 Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev. 106, 256–276 (2016).
  • 71 Khan AA, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int. J. Nanomed. 8, 2733 (2013).
  • 72 Florence AT, Siepmann J. Modern Pharmaceutics Volume 1: Basic Principles and Systems. CRC Press, CA, USA (2009).
  • 73 Rizk ML, Zou L, Savic RM, Dooley KE. Importance of drug pharmacokinetics at the site of action. Clin. Transl. Sci. 10(3), 133–142 (2017).
  • 74 Bertol CD, Oliveira PR, Kuminek G, Rauber GS, Stulzer HK, Silva MA. Increased bioavailability of primaquine using poly (ethylene oxide) matrix extended-release tablets administered to beagle dogs. Ann. Trop. Med. Parasitol. 105, 475–484 (2011).
  • 75 Padhye SG, Nagarsenker Mangal S. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J. Pharm. Sci. 75(5), 591–598 (2013).
  • 76 Huttunen KM, Raunio H, Rautio J. Prodrugs – from serendipity to rational design. Pharmacol. Rev. 63(3), 750771 (2011).
  • 77 Ladenson PW, Kristensen JD, Ridgway EC et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–1916 (2010).
  • 78 Charmot D. Non-systemic drugs: a critical review. Curr. Pharm. Des. 18(10), 1434–1445 (2012). • Detailed about information on the nonsystemic local acting drugs and the concept of bioavailability in such cases are given in detail.
  • 79 Nutt D. GABA A receptors: subtypes, regional distribution, and function. J. Clin. Sleep Med. 2(02), S7–S11 (2006).
  • 80 Reddy LH, Couvreur P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol. 55(6), 1461–1466 (2011).
  • 81 Mueller M, de la Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob. Agents Chemother. 48(2), 369–377 (2004).
  • 82 D'avolio A, Pensi D, Baietto L, Di Perri G. Therapeutic drug monitoring of intracellular anti-infective agents. J. Pharm. Biomed. Anal. 101, 183–193 (2014).
  • 83 Leucuta SE. Subcellular drug targeting, pharmacokinetics and bioavailability. J. Drug Target. 22(2), 95–115 (2014).
  • 84 Aljayyoussi G, Jenkins VA, Sharma R. Pharmacokinetic–pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration. Sci. Rep. 107, 1–11 (2017).
  • 85 You JO, Auguste DT. Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer. Nano. Lett. 9, 4467–4473 (2009).
  • 86 He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 31(13), 3657–3666 (2010).
  • 87 Funato K, Yoda R, Kiwada H. Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in rat fresh plasma. Biochim. Biophys. Acta. 1103(2), 198–204 (1992).
  • 88 Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15(17), 1193 (2008).
  • 89 Mishra N, Yadav NP, Rai VK et al. Efficient hepatic delivery of drugs: novel strategies and their significance. Biomed Res. Int. 2013, 382184 (2013).
  • 90 Ogawara KI, Yoshida M, Furumoto K et al. Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J. Drug Target 7(3), 213–221 (1999).
  • 91 Harashima H, Kiwada H. Liposomal targeting and drug delivery: kinetic consideration. Adv. Drug Deliv. Rev. 19(3), 425–444 (1996).
  • 92 Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog. Polym. Sci. 33(1), 113–137 (2008).
  • 93 Tian Q, Zhang CN, Wang XH et al. Glycyrrhetinic acid-modified chitosan/poly (ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 31(17), 4748–4756 (2010).
  • 94 Negishi M, Irie A, Nagata N, Ichikawa A. Specific binding of glycyrrhetinic acid to the rat liver membrane. (BBA)-Biomembranes. 1066(1), 77–82 (1991).
  • 95 Geng YA, Dalhaimer P, Cai S et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2(4), 249 (2007).
  • 96 Banquy X, Suarez F, Argaw A et al. Effect of mechanical properties of hydrogel nanoparticles on macrophage cell uptake. Soft Matter. 5, 3984–3991 (2009).
  • 97 Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur. J. Pharm. Biopharm. 77(3), 417–423 (2011).
  • 98 Liu Z, Cai W, He L et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2(1), 47 (2007).
  • 99 Beningo KA, Wang YL. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115(4), 849–856 (2002).
  • 100 Merkel TJ, Jones SW, Herlihy KP et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108(2), 586–591 (2010).
  • 101 Lück M, Paulke BR, Schröder W, Blunk T, Müller RH. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39(3), 478–485 (1998).
  • 102 Adrian JE, Kamps JA, Scherphof GL et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats. Biochim. Biophys. Acta (BBA) Biomembranes. 1768(6), 1430–1439 (2007).
  • 103 Cheng M, He B, Wan T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. Plos One 7(10), e47115 (2012).
  • 104 Mori A, Klibanov AL, Torchilin VP, Huang L. Influence of the steric barrier activity of amphipathic poly (ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 284(2), 263–266 (1991).
  • 105 Dolman ME, Harmsen S, Storm G, Hennink WE, Kok RJ. Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv. Drug Deliv. Rev. 62(14), 1344–1357 (2010).
  • 106 Zhou P, Sun X, Zhang Z. Kidney–targeted drug delivery systems. Acta. Pharm. Sin B. 4(1), 37–42 (2014).
  • 107 Kaissling B, Hegyi I, Loffing J, Le Hir M. Morphology of interstitial cells in the healthy kidney. Anat. Embryol. (Berl). 193(4), 303–318 (1996).
  • 108 Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am. J. Physiol. Ren. Physiol. 296(5), F947–F956 (2009).
  • 109 Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96(23), 13203–13207 (1999).
  • 110 Pavenstaädt H. Roles of the podocyte in glomerular function. Am. J. Physiol. Ren. Physiol. 278(2), F173–F179 (2000).
  • 111 Schipper ML, Iyer G, Koh AL et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 5, 126–134 (2009).
  • 112 Takakura Y, Mahato RI, Nishikawa M, Hashida M. Control of pharmacokinetic profiles of drug – macromolecule conjugates. Adv. Deliv. Rev. 19(3), 377–399 (1996).
  • 113 Dresser MJ, Leabman MK, Giacomini KM. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90(4), 397–421 (2001).
  • 114 Christensen EI, Verroust PJ, Nielsen R. Receptor-mediated endocytosis in renal proximal tubule. Pflügers Archiv. Eur. J. Physiol. 458(6), 1039–1048 (2009).
  • 115 Albrecht C, Meijer DK, Lebbe C et al. Targeting naproxen coupled to human serum albumin to nonparenchymal cells reduces endotoxin-induced mortality in rats with biliary cirrhosis. Hepatology 26(6), 1553–1559 (1997).
  • 116 Haverdings RF, Haas M, Navis G et al. Renal targeting of captopril selectively enhances the intrarenal over the systemic effects of ACE inhibition in rats. Br. J. Pharmacol. 136(8), 1107–1116 (2002).
  • 117 Yuan ZX, Zhang ZR, Zhu D et al. Specific renal uptake of randomly 50% N-acetylated low molecular weight chitosan. Mol. Pharm. 6(1), 305–314 (2008).
  • 118 Tuffin G, Waelti E, Huwyler J, Hammer C, Marti HP. Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J. Am. Soc. Nephrol. 16(11), 3295–3305 (2005).
  • 119 Sarko D, Georges RB. Kidney-specific drug delivery: review of opportunities, achievements, and challenges. J. Anal. Pharm. Res. 2, 00033 (2016).
  • 120 van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 6(2), 151–165 (1998).
  • 121 Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood–brain barrier. J. Pharm. Sci. 89(11), 1371–1388 (2000).
  • 122 Pathan SA, Iqbal Z, Zaidi S et al. CNS drug delivery systems: novel approaches. Recent Pat. Drug Deliv. Formul. 3(1), 71–89 (2009).
  • 123 Bellavance MA, Blanchette M, Fortin D. Recent advances in blood–brain barrier disruption as a CNS delivery strategy. AAPS J. 10(1), 166–177 (2008).
  • 124 Masserini M. Nanoparticles for brain drug delivery. ISRN Bochem. 2013, 18 (2013).
  • 125 Da Cruz MT, Simões S, de Lima MC. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp. Neurol. 187(1), 65–75 (2004).
  • 126 Wang JX, Sun X, Zhang ZR. Enhanced brain targeting by synthesis of 3′, 5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 54(3), 285–290 (2002).
  • 127 Kannan S, Dai H, Navath RS et al. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl. Med. 4 (2012).
  • 128 Bergen JM, Pun SH. Analysis of the intracellular barriers encountered by nonviral gene carriers in a model of spatially controlled delivery to neurons. J. Gene Med. 10(2), 187–197 (2008).
  • 129 Cheraghi M, Negahdari B, Daraee H, Eatemadi A. Heart targeted nanoliposomal/nanoparticles drug delivery: an updated review. Biomed. Pharmaco. ther. 86, 316–323 (2017).
  • 130 Chanyshev B, Shainberg A, Isak A et al. Anti-ischemic effects of multivalent dendrimeric A3 adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol. Res. 65(3), 338–346 (2012).
  • 131 Liu M, Li M, Wang G et al. Heart-targeted nanoscale drug delivery systems. J. Biomed. Nanotechnol. 10(9), 2038–2062 (2014).