We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Dopamine-loaded poly (butyl cyanoacrylate) nanoparticles reverse behavioral deficits in Parkinson’s animal models

    Fatemeh Jahansooz

    Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

    ,
    Bahman Ebrahimi Hosseinzade

    *Author for correspondence: Tel.: +98 21 8609 3078;

    E-mail Address: bahman.ebrahimi@ut.ac.ir

    Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

    ,
    Ashrafalsadat Hatamian Zarmi

    Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

    ,
    Fatemeh Hadi

    Department of Brain & Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology (ACECR), Tehran, Iran

    ,
    Seyed Mohammad Massood Hojjati

    Department of Neurology, Babol University of Medical Sciences, Babol, Iran

    &
    Koorosh Shahpasand

    **Author for correspondence: Tel.: +98 21 2230 6485; Fax.: +98 21 22356 2507; 

    E-mail Address: shahpasand09@gmail.com

    Department of Brain & Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology (ACECR), Tehran, Iran

    Published Online:https://doi.org/10.4155/tde-2020-0026

    Aim: Parkinson's disease (PD) is a neurological disorder resulting from decreased dopamine (DA) secretion in the brain, which reflects impaired motor function. Thus, a drug-delivery system for releasing DA into the brain would be of crucial importance. Materials & methods: We herein examined the in vivo drug efficiency of novel poly-butyl-cyanoacrylate nanoparticles loaded with DA (DA-PBCA NPs). Results & conclusion: The NPs were able to pass through the blood–brain barrier and improve brain structure and function in the PD animal models. Moreover, we found a reduced α-synucleinopathy in the animal model brains after the NPs administration. Thus, the NPs seem to be a reliable DA delivery system for treating PD patients.

    Graphical abstract

    References

    • 1. Seppi K, Ray Chaudhuri K, Coelho M et al. Update on treatments for nonmotor symptoms of Parkinson's disease – an evidence-based medicine review. Mov. Disord. 34(2), 180–198 (2019).
    • 2. Poovaiah N, Davoudi Z, Peng H et al. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 10(36), 16962–16983 (2018).
    • 3. Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. Dopamine and levodopa prodrugs for the treatment of Parkinson's disease. Molecules 23(1), 40 (2018).
    • 4. Miyasaki JM. Parkinson's disease and related disorders. In: Neuropalliative Care. Creutzfeldt CJKluger BMHolloway RG (Eds). Springer, Cham, 59–72 (2019).
    • 5. Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL. Nigrostriatal cell firing action on the dopamine transporter. Eur. J. Neurosci. 25(9), 2755–2765 (2007).
    • 6. Mortensen OV, Amara SG. Dynamic regulation of the dopamine transporter. Eur. J. Pharmacol. 479(1–3), 159–170 (2003).
    • 7. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol. Rev. 65(1), 171–222 (2013).
    • 8. Rautio J, Kumpulainen H, Heimbach T et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7(3), 255–270 (2008).
    • 9. Müller T, Kuhn W, Möhr J-D. Evaluating ADS5102 (amantadine) for the treatment of Parkinson's disease patients with dyskinesia. Expert Opin. Pharmacother. 20(10), 1181–1187 (2019).
    • 10. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Rel. 235, 34–47 (2016).
    • 11. Italia J, Bhatt D, Bhardwaj V, Tikoo K, Kumar MR. PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J. Control. Rel. 119(2), 197–206 (2007).
    • 12. Leyva-Gomez G, Cortes H, Magana JJ, Leyva-Garcia N, Quintanar-Guerrero D, Floran B. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain. Drug Discov. Today 20(7), 824–837 (2015).
    • 13. Pillay S, Pillay V, Choonara YE et al. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm. 382(1–2), 277–290 (2009).
    • 14. Rashed ER, Abd El-Rehim HA, El-Ghazaly MA. Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of Parkinsonism: possible disease modifying activity. J. Biomed. Mater. Res. A 103(5), 1713–1720 (2015).
    • 15. Pahuja R, Seth K, Shukla A et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 9(5), 4850–4871 (2015).
    • 16. De Giglio E, Trapani A, Cafagna D, Sabbatini L, Cometa S. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal. Bioanal. Chem. 400(7), 1997–2002 (2011).
    • 17. Wei X, Liao J, Davoudi Z et al. Folate receptor-targeted and gsh-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-mercaptopurine for enhanced intracellular drug delivery in leukemia. Mar. Drugs 16(11), 439 (2018).
    • 18. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J. Control. Release 270, 290–303 (2018).
    • 19. Ćurić A, Keller B-L, Reul R, Möschwitzer J, Fricker G. Development and lyophilization of itraconazole loaded poly (butyl cyanoacrylate) nanospheres as a drug delivery system. Eur. J. Pharm. Sci. 78, 121–131 (2015).
    • 20. Yordanov G. Poly (alkyl cyanoacrylate) nanoparticles as drug carriers: 33 years later. Bulg. Chem. Commun. 1(2), 61–72 (2012).
    • 21. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14(3), 325–328 (1997).
    • 22. Alyautdin R, Tezikov E, Ramge P, Kharkevich D, Begley D, Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80–coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsul. 15(1), 67–74 (1998).
    • 23. Kisich K, Gelperina S, Higgins M et al. Encapsulation of moxifloxacin within poly (butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm. 345(1–2), 154–162 (2007).
    • 24. Fan C, Wang D-A. Novel gelatin-based nano-gels with coordination-induced drug loading for intracellular delivery. J. Mater. Sci. Technol. 32(9), 840–844 (2016).
    • 25. Liao J, Peng H, Wei X et al. A bio-responsive 6-mercaptopurine/doxorubicin based “Click Chemistry” polymeric prodrug for cancer therapy. Mater. Sci. Eng. C 108, 110461 (2020).
    • 26. Kufleitner J, Wagner S, Worek F, von Briesen H, Kreuter J. Adsorption of obidoxime onto human serum albumin nanoparticles: drug loading, particle size and drug release. J. Microencapsul. 27(6), 506–513 (2010).
    • 27. Huang C-Y, Chen C-M, Lee Y-D. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly (n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm. 338(1–2), 267–275 (2007).
    • 28. Rice A, Michaelis ML, Georg G, Liu Y, Turunen B, Audus KL. Overcoming the blood-brain barrier to taxane delivery for neurodegenerative diseases and brain tumors. J. Mol. Neurosci. 20(3), 339–343 (2003).
    • 29. Wheeler DS, Ebben AL, Kurtoglu B et al. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake. Eur. J. Neurosci. 46(10), 2638–2646 (2017).
    • 30. Alvarez-Fischer D, Henze C, Strenzke C et al. Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and α-synuclein-deleted mice. Exp. Neurol. 210(1), 182–193 (2008).
    • 31. Schallert T, Woodlee MT. Brain-dependent movements and cerebral-spinal connections: key targets of cellular and behavioural enrichment in CNS injury models. J. Rehabil. Res. Dev. 40(4), 9–18 (2003).
    • 32. Voronin MV, Kadnikov IA, Voronkov DN, Seredenin SB. Chaperone Sigma1R mediates the neuroprotective action of afobazole in the 6-OHDA model of Parkinson's disease. Sci. Rep. 9(1), 1–12 (2019).
    • 33. Enea M, Araújo AM, Peixoto de Almeida M et al. A metabolomic approach for the in vivo study of gold nanospheres and nanostars after a single-dose intravenous administration to Wistar rats. Nanomaterials 9(11), 1606 (2019).
    • 34. Naeem S, Najam R, Khan SS, Mirza T, Sikandar B. Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats. Metab. Brain Dis. 34(4), 1191–1199 (2019).
    • 35. Tariq M, Khan HA, Elfaki I, Al Deeb S, Al Moutaery K. Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental Huntington's disease in rats. Brain Res. Bull. 67(1–2), 161–168 (2005).
    • 36. Miyanishi K, Choudhury ME, Watanabe M et al. Behavioural tests predicting striatal dopamine level in a rat hemi-Parkinson's disease model. Neurochem. Int. 122, 38–46 (2019).
    • 37. Ait-Bouziad N, Lv G, Mahul-Mellier A-L et al. Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes. Nat. Commun. 8(1), 1678 (2017).
    • 38. Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J. Neural. Transm. Suppl. 124(8), 915–964 (2017).
    • 39. Mahlknecht P, Hotter A, Hussl A, Esterhammer R, Schocke M, Seppi K. Significance of MRI in diagnosis and differential diagnosis of Parkinson's disease. Neurodegener. Dis. 7(5), 300–318 (2010).
    • 40. Rizzo G, Zanigni S, De Blasi R et al. Brain MR contribution to the differential diagnosis of parkinsonian syndromes: an update. Parkinson's Dis. 2016, 1–27 (2016).
    • 41. Watanabe H, Ito M, Fukatsu H et al. Putaminal magnetic resonance imaging features at various magnetic field strengths in multiple system atrophy. Mov. Disord. 25(12), 1916–1923 (2010).
    • 42. Wang D, Tan J, Kang H et al. Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr. Polym. 84(1), 195–202 (2011).
    • 43. Ishragi M, Jarquin UNR, Shahani N et al. RasGRP1 (CalDAG-GEF-II) mediates L-DOPA-induced dyskinesia in a mouse model of Parkinson disease. bioRxiv 739631 (2019).
    • 44. Jahansooz F, Ebrahimi-Hossienzade B, Hatamian-Zarmi A, Shahpasand K, Motamedi E. Investigation of the structural properties of dopamine-loaded poly (butyl cyanoacrylate) nanosystem. J. Appl. Polym. Sci. 3(4), 73–83 (2020).
    • 45. Lherm C, Müller RH, Puisieux F, Couvreur P. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int. J. Pharm. 84(1), 13–22 (1992).
    • 46. Hu R, Zheng H, Cao J, Davoudi Z, Wang Q. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as pH-sensitive drug delivery systems. J. Biomed. Nanotechnol. 13(9), 1097–1105 (2017).
    • 47. Yao J, Zhang Y, Hu Q et al. Optimization of paeonol-loaded poly (butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur. J. Pharm. Sci. 101, 189–199 (2017).
    • 48. Kreuter J, Ramge P, Petrov V et al. Direct evidence that polysorbate-80-coated poly (butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20(3), 409–416 (2003).
    • 49. Shimozawa A, Fujita Y, Kondo H et al. Effect of L-DOPA/benserazide on propagation of pathological α-synuclein. Front. Neurosci. 13, 595 (2019).