We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Technological development of mucoadhesive film containing poloxamer 407, polyvinyl alcohol and polyvinylpyrrolidone for buccal metronidazole delivery

    Camila Felix Vecchi

    Laboratory of Research & Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Avenida Colombo, nº 5790, 87020-900, Maringa, Brazil

    ,
    Rafaela Said dos Santos

    Laboratory of Research & Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Avenida Colombo, nº 5790, 87020-900, Maringa, Brazil

    &
    Marcos Luciano Bruschi

    *Author for correspondence:

    E-mail Address: mlbruschi@uem.br

    Laboratory of Research & Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Avenida Colombo, nº 5790, 87020-900, Maringa, Brazil

    Published Online:https://doi.org/10.4155/tde-2020-0031

    Aim: This work aimed to develop a mucoadhesive film composed of a triblock copolymer (poloxamer 407), polyvinyl alcohol and polyvinylpyrrolidone for buccal modified delivery of metronidazole. Materials & methods: Three film formulations containing different polymer amounts were prepared by solvent casting. They were characterized as physicochemical, mechanical and mucoadhesive properties, and in vitro metronidazole release profiles. Results: Films displayed physicochemical, mechanical and mucoadhesive characteristics dependent of polymeric composition and drug presence. They could rapidly swell and promote the fast drug release (80% in 20 min) that was governed by Fickian diffusion. The films showed total disintegration in less than 90 s and total drug release in 30 min. Conclusion: Therefore, the formulations represent a promising alternative for modifying of buccal metronidazole delivery for pharmaceutical applications.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Chidambaram N, Srivatsava AK. Buccal drug delivery systems. Drug Dev. Ind. Pharm. 21(9), 1009–1036 (1995).
    • 2. Bottenberg P, Cleymaet R, Rohrkasten K, Lampert F. Microhardness changes in surface enamel after application of bioadhesive fluoride tablets in situ. Clin. Oral Investig. 4(3), 153–156 (2000).
    • 3. Repka MA, Prodduturi S, Stodghill SP. Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev. Ind. Pharm. 29(7), 757–765 (2003).
    • 4. Shojaei AH. Buccal mucosa as a route for systemic drug delivery: A review. J. Pharmceutical Sci. 1(1), 15–30 (1998).
    • 5. Bruschi ML, de Freitas O. Oral bioadhesive drug delivery systems. Drug Dev. Ind. Pharm. 31(3), 293–310 (2005).
    • 6. Rezaei B, Damiri S. Fabrication of a nanostructure thin film on the gold electrode using continuous pulsed-potential technique and its application for the electrocatalytic determination of metronidazole. Electrochim. Acta. 55, 1801–1808 (2010).
    • 7. Bendesky A, Menéndez D, Ostrosky-Wegman P. Is metronidazole carcinogenic? Mutat. Res. Rev. Mutat. Res. 511(2), 133–144 (2002).
    • 8. Liu W, Zhang J, Li C, Tang L, Zhang Z, Yang M. A novel composite film derived from cysteic acid and PDDA-functionalized graphene: enhanced sensing material for electrochemical determination of metronidazole. Talanta [Internet]. 104, 204–211 (2013). http://dx.doi.org/10.1016/j.talanta.2012.11.013
    • 9. Ferreira AS, Nunes C, Castro A, Ferreira P, Coimbra MA. Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr. Polym. 113, 490–499 (2014).
    • 10. Elzatahry AA, Eldin MSM. Preparation and characterization of metronidazole-loaded chitosan nanoparticles for drug delivery application. Polym. Adv. Technol. 19(January), 1040–1047 (2008).
    • 11. Wu K, Dang X, Hu S, Shaofang L. Electrochemical reduction and voltammetric determination of metronidazole at a nanomaterial thin film coated glassy carbon electrode. Talanta 63, 653–657 (2004).
    • 12. Mohamed MI, Haider M, Ali MAM. Buccal mucoadhesive films containing antihypertensive drug. J. Chem. Pharm. Res. 3(6), 665–686 (2011).
    • 13. Boddupalli BM. Mucoadhesive drug delivery system: an overview. J. Advenced Pharm. Technol. Res. 1(4), 381–387 (2010). •• Review of modified-release systems with mucoadhesive characteristics.
    • 14. Aggarwal J, Singh G, Saini S, Rana AC. Fast dissolving films: a novel approach to oral drug delivery. Int. Res. J. Pharm. 2(12), 69–71 (2011). • Characterization of film types according to their release.
    • 15. Kajthunyakarn W, Sakloetsakun D, Pongjanyakul T. Sodium caseinate-magnesium aluminum silicate nanocomposite fi lms for modi fi ed-release tablets. Mater. Sci. Eng. C. 92(June), 827–839 (2018).
    • 16. Dixit RP, Puthli SP. Oral strip technology: overview and future potential. J. Control. Rel. 139(2), 94–107 (2009). http://dx.doi.org/10.1016/j.jconrel.2009.06.014
    • 17. Kalyan S, Bansal M. Recent trends in the development of oral dissolving film. Int. J. PharmTech Res. 4(2), 725–733 (2012).
    • 18. Bernin D, Marucci M, Boissier C, Hjärtstam J, Olsson U, Abrahmsén-alami S. Real time MRI to elucidate the functionality of coating films intended for modified release. J. Control. Rel. 312(August), 117–124 (2019).
    • 19. Soskolone WA, Freidman M. Intra-periodontal pocket drug delivery systems. Drugs Pharm. Sci. 74, 359–379 (1996).
    • 20. Ribeiro LNM, Alcântara ACS, Darder M, Aranda P, Araújo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int. J. Pharm. 463(1), 1–9 (2014). http://dx.doi.org/10.1016/j.ijpharm.2013.12.035
    • 21. Singh S, Jain S, Muthu MS, Tiwari S, Tilak R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. AAPS PharmSciTech. 9(2), 660–667 (2008).
    • 22. De Araujo DR, Padula C, Cereda CMS et al. Bioadhesive films containing benzocaine: correlation between in vitro permeation and in vivo local anesthetic effect. Pharm. Res. 27(8), 1677–1686 (2010).
    • 23. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur. J. Pharm. Biopharm. [Internet] 77(2), 187–199 (2011). http://dx.doi.org/10.1016/j.ejpb.2010.11.023
    • 24. Koland M, Charyulu RN, Prabhu P. Mucoadhesive films of losartan potassium for buccal delivery: design and characterization. Indian J. Pharm. Educ. Res. 44(4), 315–323 (2010).
    • 25. Desai SD, Blanchard J. In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J. Pharm. Sci. 87(2), 226–230 (1998).
    • 26. Nita H, Ogawa K. Ophtalmic composition with regulated viscosity. United States patent: US 6511949 B1 (2003).
    • 27. Taheri A, Atyabi F, Dinarvnd R. Temperature-responsive and biodegradable PVA:PVP k30:poloxamer 407 hydrogel for controlled delivery of human growth hormone (hGH). J. Pediatr. Endocrinol. Metab. 24(3–4), 175–179 (2011).
    • 28. Vecchi CF, Bruschi ML. Films composed of polyvinyl alcohol, polyvinylpyrrolidone and poloxamer 407: in-vitro mucoadhesive analysis. Presented at: XVIII Brazilian Materials Research Society Meeting. Balneario Camboriu, SC, Brazil, 22–26 November 2019.
    • 29. Toledo L de A. Mechanical characterization of propolis films.. Presented at: II Congress of the Brazilian Association of Pharmaceutical Sciences. Buzios, Rio de Janeiro, Brazil, 24–27 September 2014.
    • 30. Toledo L de A, Bavato MI, Rosseto HC, Cortesi R. Pharmaceutical films made from the waste material from the preparation of propolis extracts: development and characterization. Brazilian J. Pharm. Sci. 51(4), 847–859 (2015).
    • 31. Deshmane SV, Channawar MA, Chandewar AV, Joshi UM, Biyani KR. Chitosan based sustained release mucoadhesive buccal patches containing verapamil HCL. Int. J. Pharm. Pharm. Sci. 1(Suppl. 1), 216–229 (2009). •• Preparation and characterization methodologies for films.
    • 32. Cao N, Yang X, Fu Y. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 23(3), 729–735 (2009).
    • 33. Ammar HO, Ghorab MM, Mahmoud AA, Shahin HI. Design and in vitro/in vivo evaluation of ultra-thin mucoadhesive buccal film containing fluticasone propionate. AAPS PharmSciTech. 18(1), 93–103 (2017).
    • 34. Trastullo R, Abruzzo A, Saladini B et al. Design and evaluation of buccal films as paediatric dosage form for transmucosal delivery of ondansetron. Eur. J. Pharm. Biopharm. 105, 115–121 (2016).
    • 35. Nesseem DI, Eid SF, El-Houseny SS. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 89(13–14), 430–438 (2011). http://dx.doi.org/10.1016/j.lfs.2011.06.026
    • 36. El-kamel AH, Ashri LY, Alsarra IA. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech. 8(3), 184–194 (2007).
    • 37. Brito M, Bassi J, Camotti M, Kimura E, Diniz A. Design and characterization of mucoadhesive gelatin-ethylcellulose microparticles for the delivery of curcumin to the bladder. Curr. Drug Deliv. 15(8), 1112–1122 (2018).
    • 38. Verma N, Chattopadhyay P. Preparation of mucoadhesive patches for buccal administration of metoprolol succinate: in vitro and in vivo drug release and bioadhesion. Trop. J. Pharm. Res. 11(1), 9–17 (2012). • Methodologies for mechanical analysis of films.
    • 39. Goodman H, Kanig J. Evaluative procedures for film-forming materials used in pharmaceutical applications. J. Pharmaeutical Sci. 51(1), 77–83 (1962).
    • 40. de Toledo LAS, Bavato MI, Rosseto HC, Cortesi R, Bruschi ML. Pharmaceutical films made from the waste material from the preparation of propolis extracts: development and characterization. Brazilian J. Pharm. Sci. 51(4), 847–859 (2015).
    • 41. Speer I, Steiner D, Thabet Y, Breitkreutz J, Kwade A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 132, 50–61 (2018).
    • 42. De Souza Ferreira SB, De Assis Dias BR, Obregón CS et al. Microparticles containing propolis and metronidazole: in vitro characterization, release study and antimicrobial activity against periodontal pathogens. Pharm. Dev. Technol. 19(2), 173–180 (2014).
    • 43. Bruschi ML, Jones DS, Panzeri H, Gremião MPD, de Freitas O, Lara EHG. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J. Pharm. Sci. 96(8), 2074–2089 (2006).
    • 44. Rosina CR, Baroni S, Cavalcanti OA. Avaliação das propriedades de intumescimento e permeabilidade de filmes isolados de polimetacrilato contendo polissacarídeo da raiz de Lótus (Nelumbo nucifera). Rev. Bras. Ciências Farm. 40(3), 425–431 (2004).
    • 45. Baraker BM, Lobo B. Microstructure of cadmium chloride doped PVA/PVP blend films. Mater. Today Proc. 5(1), 3036–3043 (2018).
    • 46. Kreidel RN, Duque DM, Serra CHR et al. Dissolution enhancement and characterization of nimodipine solid dispersions with poloxamer 407 or PEG 6000. J. Dispers. Sci. Technol. 2, 2–20 (2009).
    • 47. Omkaram I, Sreekanth Chakradhar RP, Lakshmana Rao J. EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films. Phys. B Condens. Matter. 388(1–2), 318–325 (2007).
    • 48. Abdelrazek EM, El Damrawi G, Al-Shahawy A. Some studies on calcium phosphate embedded in polyvinyl alcohol matrix before and after γ-irradiation. Phys. B Condens. Matter. 405(3), 808–816 (2010).
    • 49. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE. Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019).
    • 50. Ramukutty S, Ramachandran E. Crystal growth by solvent evaporation and characterization of metronidazole. J. Cryst. Growth 351(1), 47–50 (2012).
    • 51. Duraikkan V, Sultan AB, Nallaperumal N, Shunmuganarayanan A. Structural, thermal and electrical properties of polyvinyl alcohol/poly(vinyl pyrrolidone)-sodium nitrate solid polymer blend electrolyte. Ionics 24, 139–151 (2018).
    • 52. Elashmawi I, Abdelrazek E, Yassin A. Influence of NiCl2/CdCl2 as mixed filler on structural, thermal and electrical properties of PVA/PVP Blend. Br. J. Appl. Sci. Technol. 4(30), 4263–4279 (2014).
    • 53. Leyva-Gómez G, Santillan-Reyes E, Lima E et al. A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater. Sci. Eng. C. 74, 36–46 (2017).
    • 54. Herculano RD, Alencar De Queiroz AA, Kinoshita A, Oliveira ON, Graeff CFO. On the release of metronidazole from natural rubber latex membranes. Mater. Sci. Eng. C. 31(2), 272–275 (2011).
    • 55. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J. Drug Deliv. Sci. Technol. 49(December 2018), 420–432 (2019).
    • 56. Chonkar AD, Rao JV, Managuli RS et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur. J. Pharm. Biopharm. 103, 179–191 (2016).
    • 57. de Alcantara Sica de Toledo L, Rosseto HC, Ravani L, Cortesi R, Luciano Bruschi M. Waste material of propolis as a film forming agent intended to modify the metronidazole release: preparation and characterization. Curr. Drug Deliv. 13(7), 1152–1164 (2016). • Characterization of pharmaceutical films containing metronidazole.
    • 58. Aider M. Chitosan application for active bio-based films production and potential in the food industry: review. LWT-Food Sci. Technol. 43(6), 837–842 (2010).
    • 59. Bodini RB, Guimarães J das GL, Monaco-Lourenço CA, Aparecida de Carvalho R. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. J. Drug Deliv. Sci. Technol. 51(November 2018), 403–410 (2019).
    • 60. Moreno MF. Application of small punch testing on the mechanical and microstructural characterizations of P91 steel at room temperature. Int. J. Press. Vessel. Pip. 142–143, 1–9 (2016).
    • 61. Materials and processes in manufacturing. 9th Edition, Degarmo EPKohser RAKlamecki BE (Eds.) Wiley & Sons, NY, USA, 1154 (2003).
    • 62. Kamper SL, Fennema O. Water vapor permeability of an edible, fatty acid, bilayer film. J. Food Sci. 49(6), 1482–1485 (1984).
    • 63. Biquet B, Labuza TP. Evaluation of the moisture permeability characteristics of chocolate films as an edible moisture barrier. J. Food Sci. 53(4), 989–998 (1988).
    • 64. Bassi da Silva J, Ferreira SB de S, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev. Ind. Pharm. 43(7), 1053–1070 (2017).
    • 65. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 57(11), 1556–1568 (2005).
    • 66. Validation of Analytical Procedures: Text and Methodology Q2(R1). In: ICH (2005). www.ema.europa.eu/en/ich-q2-r1-validation-analytical-procedures-text-methodology
    • 67. Pereira RR de A, Godoy JSR, Svidzinski TIE, Bruschi ML. Preparation and characterization of mucoadhesive thermoresponsive systems containing propolis for the treatment of vulvovaginal candidiasis. J. Pharmaeutical Sci. 102(4), 1222–1234 (2013).