We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/tde-2020-0068

The advancement of the oral route for macromolecules has gained a lot of attention due to its noninvasive nature, safe and challenging in active research but with limited success. Oral administration poses challenges due to poor solubility, short half-life, quick elimination and the physical, chemical and biological barriers of the gastrointestinal tract. Approaches of past for improving oral absorption, such as enhancers, mucoadhesive delivery and enzyme inhibitors have been taken over by novel approaches like advanced liposomes, self-nanoemulsifying drug delivery system, nanoparticles and targeted delivery. Eudratech™ Pep, Peptelligence, Rani Pill and Pharm Film are the emerging technologies for delivering oral proteins and peptide. Calcitonin, semaglutide and octreotide are the peptides available in the market for oral delivery as outcomes of these technologies.

References

  • 1. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4(11), 1443–1467 (2013).
  • 2. Tsomaia N. Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).
  • 3. Ismail R, Csoka I. Novel strategies in the oral delivery of antidiabetic peptide drugs–Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm. 115, 257–267 (2017).
  • 4. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20(1), 122–128 (2015).
  • 5. Market Research Engine. Peptide Therapeutic Market Research Report. www.marketresearchengine.com/peptide-therapeutic-market
  • 6. Grand view research. Peptide Therapeutic Market Size Worth.. www.grandviewwresearch.com/industry-analysis/peptides-therapeutics-market
  • 7. Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat. Rev. Materials 5, 1–22 (2019).
  • 8. Lewis AL, Richard J. Challenges in the delivery of peptide drugs: an industry perspective. Ther. Deliv. 6(2), 149–163 (2015).
  • 9. Usmani SS, Bedi G, Samuel JS et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS ONE 12(7), e0181748 (2017).
  • 10. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7(1), 21–39 (2008).
  • 11. Mullard A. 2017 FDA drug approvals. (2018). www.nature.com/articles/nrd.2018.4
  • 12. Wright L, Barnes T, Prestidge C. Oral delivery of protein-based therapeutics: gastroprotective strategies, physiological barriers and in vitro permeability prediction. Int. J. Pharm. 585, 119488 (2020).
  • 13. Yin N, Brimble MA, Harris PW, Wen J. Enhancing the oral bioavailability of peptide drugs by using chemical modification and other approaches. Med. Chem 4(12), 763–769 (2014).
  • 14. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev. 106, 256–276 (2016).
  • 15. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 447(1-2), 75–93 (2013).
  • 16. Räder AF, Reichart F, Weinmüller M, Kessler H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem. 26(10), 2766–2773 (2018).
  • 17. Liu C, Kou Y, Zhang X, Cheng H, Chen X, Mao S. Strategies and industrial perspectives to improve oral absorption of biological macromolecules. Expert Opin. Drug Deliv. 15(3), 223–233 (2018).
  • 18. Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11(3), 129 (2019).
  • 19. Drucker DJ. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 1–13 (2019).
  • 20. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2018).
  • 21. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19(5), 313 (2018).
  • 22. Yamamoto A, Ukai H, Morishita M, Katsumi H. Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol. Ther. 211, 107537 (2020).
  • 23. Aungst BJ. Absorption enhancers: applications and advances. AAPS J. 14(1), 10–18 (2012).
  • 24. Kalra S, Sahay R. A review on semaglutide: an oral glucagon-like peptide 1 receptor agonist in management of Type 2 diabetes mellitus. Diabetes Ther. 11, 1–18 (2020).
  • 25. Victor SP, Paul W, Sharma CP. Eligen® technology for oral delivery of proteins and peptides. In: Mucosal Delivery of Biopharmaceuticals. Springer, 407–422 (2014). https://link.springer.com/chapter/10.1007/978-1-4614-9524-6_18
  • 26. Fattah S, Ismaiel M, Murphy B et al. Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers. Eur. J. Pharm. Sci. 154, 105509 (2020).
  • 27. Maher S, Brayden DJ. Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discov. Today 9(2), e113–e119 (2012).
  • 28. Shaji J, Patole V. Protein and peptide drug delivery: oral approaches. Indian J. Pharm. Sci. 70(3), 269 (2008).
  • 29. Doostmohammadi M, Ameri A, Mohammadinejad R et al. Hydrogels for peptide hormones delivery: therapeutic and tissue engineering applications. Drug Design Devel. Ther. 13, 3405 (2019).
  • 30. Agrahari V, Agrahari V, Mitra AK. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther. Deliv. 7(4), 257–278 (2016).
  • 31. Moroz E, Matoori S, Leroux J-C. Oral delivery of macromolecular drugs: where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 101, 108–121 (2016).
  • 32. Ichikawa H, Peppas NA. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin‐transport enhancing effects using Caco‐2 cell monolayers. J. Biomed. Mater. Res. A 67(2), 609–617 (2003).
  • 33. Rekha M, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes–future perspectives. Int. J. Pharm. 440(1), 48–62 (2013).
  • 34. Lee HJ, Amidon GL. The effect of enzyme inhibitor and absorption site following [D‐ala2, D‐leu5] enkephalin oral administration in rats. Biopharm. Drug Dispos. 23(4), 131–141 (2002).
  • 35. Sosnik A, Das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog. Polym. Sci. 39(12), 2030–2075 (2014).
  • 36. Russo E, Selmin F, Baldassari S et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J. Drug Deliv. Sci. Technol. 32, 113–125 (2016).
  • 37. Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur. J. Pharm. Biopharm. 56(2), 207–214 (2003).
  • 38. Millotti G, Laffleur F, Perera G et al. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery. J. Pharm. Sci. 103(10), 3165–3170 (2014).
  • 39. Duggan S, Cummins W, O'donovan O, Hughes H, Owens E. Thiolated polymers as mucoadhesive drug delivery systems. Eur. J. Pharm. Sci. 100, 64–78 (2017).
  • 40. Muheem A, Shakeel F, Jahangir MA et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J. 24(4), 413–428 (2016).
  • 41. Cao S-J, Xu S, Wang H-M et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 20(5), 190 (2019).
  • 42. Ibrahim YHY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. DARU J. Pharm. Sci. 28, 1–14 (2020).
  • 43. Niu Z, Conejos-Sánchez I, Griffin BT, O'driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev. 106, 337–354 (2016).
  • 44. Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 20(6), 237–246 (2013).
  • 45. Niu M, Lu Y, Hovgaard L et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm. 81(2), 265–272 (2012).
  • 46. Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization and improved protection against enzymatic degradation. Int. J. Nanomed. 6, 1155 (2011).
  • 47. Niu M, Tan YN, Guan P et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int. J. Pharm. 460(1-2), 119–130 (2014).
  • 48. Cui M, Wu W, Hovgaard L, Lu Y, Chen D, Qi J. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int. J. Pharm. 489(1-2), 277–284 (2015).
  • 49. Gradauer K, Barthelmes J, Vonach C et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J. Control. Rel. 172(3), 872–878 (2013).
  • 50. Han Y, Gao Z, Chen L et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B 9(5), 902–922 (2019).
  • 51. Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J. Food Drug Anal. 25(2), 219–234 (2017).
  • 52. Lakkireddy HR, Urmann M, Besenius M et al. Oral delivery of diabetes peptides – comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv. Drug Deliv. Rev. 106, 196–222 (2016).
  • 53. Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 101, 112–123 (2018).
  • 54. Dumont C, Bourgeois S, Fessi H, Jannin V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int. J. Pharm. 541(1-2), 117–135 (2018).
  • 55. Dumont C, Bourgeois S, Fessi H, Dugas P-Y, Jannin V. In-vitro evaluation of solid lipid nanoparticles: ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int. J. Pharm. 565, 409–418 (2019).
  • 56. Krstić M, Medarević Đ, Đuriš J, Ibrić S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In: Lipid Nanocarriers for Drug Targeting. Elsevier, 473–508 (2018). www.sciencedirect.com/science/article/pii/B9780128136874000128
  • 57. Mahmood A, Bernkop-Schnürch A. SEDDS: a game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv. Drug Deliv. Rev. 142, 91–101 (2019).
  • 58. Karamanidou T, Karidi K, Bourganis V, Kontonikola K, Kammona O, Kiparissides C. Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur. J. Pharm. Biopharm. 97, 223–229 (2015).
  • 59. Li P, Tan A, Prestidge CA, Nielsen HM, Müllertz A. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading. Int. J. Pharm. 477(1-2), 390–398 (2014).
  • 60. Garg V, Kaur P, Singh SK et al. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur. J. Pharm. Sci. 109, 297–315 (2017).
  • 61. Dogru S, Calis S, Öner F. Oral multiple w/o/w emulsion formulation of a peptide salmon calcitonin: in vitroin vivo evaluation. J. Clin. Pharm. Ther. 25(6), 435–443 (2000).
  • 62. Venkata Siddhartha T, Senthil V, Sai Kishan I, Basha Khatwal R, V Madhunapantula S. Design and development of oral nanoparticulated insulin in multiple emulsion. Current drug delivery 11(4), 472–485 (2014).
  • 63. Garcıa-Fuentes M, Torres D, Alonso M. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf. B 27(2-3), 159–168 (2003).
  • 64. Li X, Qi J, Xie Y et al. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization and hypoglycemic effect in rats. Int. J. Nanomed. 8, 23 (2013).
  • 65. Agrawal GR, Wakte P, Shelke S. Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier. Prog. Biomaterials 6(3), 125–136 (2017).
  • 66. Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 221, 94–112 (2019).
  • 67. Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int. J. Biol. Macromol. 154, 433–445 (2020).
  • 68. Sonaje K, Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30(12), 2329–2339 (2009).
  • 69. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60(15), 1650–1662 (2008).
  • 70. Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J. Control. Rel. 313, 1–13 (2019).
  • 71. Wong CY, Al-Salami H, Dass CR. Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. J. Drug Deliv. Sci. Technol. 57, 101738 (2020).
  • 72. Maria S, Sarwar HS, Sohail MF et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. J. Drug Deliv. Sci. Technol. 58, 101807 (2020).
  • 73. Beloqui A, Des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv. Drug Deliv. Rev. 106, 242–255 (2016).
  • 74. Chin J, Mahmud KF, Kim SE, Park K, Byun Y. Insight of current technologies for oral delivery of proteins and peptides. Drug Discov. Today 9(2), e105–e112 (2012).
  • 75. Soudry-Kochavi L, Naraykin N, Nassar T, Benita S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J. Control. Rel. 217, 202–210 (2015).
  • 76. Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr. Polym. 230, 115617 (2020).
  • 77. Lee S, Kim Y-C, Park J-H. Zein-alginate based oral drug delivery systems: protection and release of therapeutic proteins. Int. J. Pharm. 515(1-2), 300–306 (2016).
  • 78. Song Y, Gan W, Li Q, Guo Y, Zhou J, Zhang L. Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohydr. Polym. 86(1), 171–176 (2011).
  • 79. Maroni A, Del Curto MD, Salmaso S et al. In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. Eur. J. Pharm. Biopharm. 108, 76–82 (2016).
  • 80. Wu ZM, Zhou L, Guo XD et al. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int. J. Pharm. 425(1-2), 1–8 (2012).
  • 81. Amirthalingam E, Rodrigues M, Casal-Dujat L et al. Macrocyclic imidazolium-based amphiphiles for the synthesis of gold nanoparticles and delivery of anionic drugs. J. Colloid Interface Sci. 437, 132–139 (2015).
  • 82. Cho H-J, Oh J, Choo M-K, Ha J-I, Park Y, Maeng H-J. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int. J. Biol. Macromol. 63, 15–20 (2014).
  • 83. Deng W, Xie Q, Wang H, Ma Z, Wu B, Zhang X. Selenium nanoparticles as versatile carriers for oral delivery of insulin: insight into the synergic antidiabetic effect and mechanism. Nanomedicine 13(6), 1965–1974 (2017).
  • 84. Zhang Y, Zhang L, Ban Q, Li J, Li C-H, Guan Y-Q. Preparation and characterization of hydroxyapatite nanoparticles carrying insulin and gallic acid for insulin oral delivery. Nanomedicine 14(2), 353–364 (2018).
  • 85. Zhao X, Shan C, Zu Y et al. Preparation, characterization and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int. J. Pharm. 454(1), 278–284 (2013).
  • 86. Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B 8(2), 147–164 (2018).
  • 87. O'hagan D, Mcgee J, Holmgren J et al. Biodegradable microparticles for oral immunization. Vaccine 11(2), 149–154 (1993).
  • 88. Maculotti K, Tira EM, Sonaggere M et al. In vitro evaluation of chondroitin sulphate-chitosan microspheres as carrier for the delivery of proteins. J. Microencapsul. 26(6), 535–543 (2009).
  • 89. Fonte P, Araújo F, Silva C et al. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol. Adv. 33(6), 1342–1354 (2015).
  • 90. Inchaurraga L, Martín-Arbella N, Zabaleta V, Quincoces G, Peñuelas I, Irache JM. In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration. Eur. J. Pharm. Biopharm. 97, 280–289 (2015).
  • 91. Wang H, Zhao Y, Wang H et al. Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer. J. Control. Rel. 192, 47–56 (2014).
  • 92. Mahajan A, Rawat AS, Bhatt N, Chauhan MK. Structural modification of proteins and peptides. Indian J. Pharm. Educ. Res. 48(3), 34–47 (2014).
  • 93. Pawar VK, Meher JG, Singh Y, Chaurasia M, Reddy BS, Chourasia MK. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. J. Control. Rel. 196, 168–183 (2014).
  • 94. Chuang E-Y, Lin K-J, Lin P-Y et al. Self-assembling bubble carriers for oral protein delivery. Biomaterials 64, 115–124 (2015).
  • 95. Tyagi P, Pechenov S, Subramony JA. Oral peptide delivery: translational challenges due to physiological effects. J. Control. Rel. 287, 167–176 (2018).
  • 96. Shenoy B, Wang Y, Shan W, Margolin AL. Stability of crystalline proteins. Biotechnol. Bioeng. 73(5), 358–369 (2001).
  • 97. Shahiwala A. Cyclodextrin conjugates for colon drug delivery. J. Drug Deliv. Sci. Technol. 55, 101448 (2020).
  • 98. Corazza FG, Ernesto JV, Nambu FA et al. Papain-cyclodextrin complexes as an intestinal permeation enhancer: permeability and in vitro safety evaluation. J. Drug Deliv. Sci. Technol. 55, 101413 (2020).
  • 99. Yang L, Li M, Sun Y, Zhang L. A cell-penetrating peptide conjugated carboxymethyl-β-cyclodextrin to improve intestinal absorption of insulin. Int. J. Biol. Macromol. 111, 685–695 (2018).
  • 100. Niu Z, Thielen I, Barnett A, Loveday SM, Singh H. ε-Polylysine and β-cyclodextrin assembling as delivery systems for gastric protection of proteins and possibility to enhance intestinal permeation. J. Colloid Interface Sci. 546, 312–323 (2019).
  • 101. Maher S, Ryan B, Duffy A, Brayden DJ. Formulation strategies to improve oral peptide delivery. Pharm. Pat. Anal. 3(3), 313–336 (2014).
  • 102. Feng K, Li C, Wei Y-S, Zong M-H, Wu H, Han S-Y. Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. J. Colloid Interface Sci. 552, 186–195 (2019).
  • 103. Xu Y, De Keersmaecker H, Braeckmans K et al. Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials. 255, 120209 (2020).
  • 104. Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: a look into targeting approaches for improved oral drug delivery systems. J. Control. Rel. 322, 486–508 (2020).
  • 105. Russell-Jones G. Intestinal receptor targeting for peptide delivery: an expert's personal perspective on reasons for failure and new opportunities. Ther. Deliv. 2(12), 1575–1593 (2011).
  • 106. Qin J-J, Wang W, Sarkar S, Zhang R. Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis. J. Control. Rel. 237, 101–114 (2016).
  • 107. Kang SK, Woo JH, Kim MK et al. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J. Biotechnol. 135(2), 210–216 (2008).
  • 108. Wu Y, Tang L, Wang B, Sun Q, Zhao P, Li W. The role of autophagy in maintaining intestinal mucosal barrier. J. Cell. Physiol. 234(11), 19406–19419 (2019).
  • 109. Jin Y, Song Y, Zhu X et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 33(5), 1573–1582 (2012).
  • 110. Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 6(11), e1001147 (2010).
  • 111. Beloqui A, Brayden DJ, Artursson P, Préat V, Des Rieux A. A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat. Protoc. 12(7), 1387 (2017).
  • 112. Ma CZ-H, Zheng Y-P, Lee WC-C. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke. Top. Stroke Rehabil. 25(1), 20–27 (2018).
  • 113. Diesner SC, Bergmayr C, Wang X-Y et al. Characterization of Vibrio cholerae neuraminidase as an immunomodulator for novel formulation of oral allergy immunotherapy. Clin. Immunol. 192, 30–39 (2018).
  • 114. Engel A, Benedikt A, Baer MH. An innovative smart oral delivery technology for proteins and peptides. ONdrugDelivery Magazine 69, 8–11 (2016).
  • 115. Enteris Biopharma. Peptelligence. https://enterisbiopharma.com/peptelligence/
  • 116. Emisphere. The Eligen Technology. https://emisphere.com/technology/
  • 117. Malkov D, Angelo R, Wang H-Z, Flanders E, Tang H, Gomez-Orellana I. Oral delivery of insulin with the eligen (®) technology: mechanistic studies. Curr. Drug Deliv. 2(2), 191–197 (2005).
  • 118. Aguirre TA, Teijeiro-Osorio D, Rosa M, Coulter I, Alonso M, Brayden D. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv. Drug Deliv. Rev. 106, 223–241 (2016).
  • 119. Eldor R, Arbit E, Miteva Y, Freier R, Kidron M. Oral insulin: Type I diabetes (T1DM) patient response upon pre-prandial administration. Presented at: 70th American Diabetis Association Scientific sessions. Orlando, 25–30 June 2010.
  • 120. Kidron M, Dinh S, Menachem Y et al. A novel per‐oral insulin formulation: proof of concept study in non‐diabetic subjects. Diabet. Med. 21(4), 354–357 (2004).
  • 121. Oramed Pharmaceuticals. www.oramed.com
  • 122. Oramed. Kidron.Methods and compositions for oral administration of exenatide. USPTO,10,350,162 (2017). http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10350162.PN.&OS=PN/10350162&RS=PN/10350162/
  • 123. Clinical Trials. https://clinicaltrials.gov/ct2/show/NCT00948493
  • 124. Wajcberg E, Miyazaki Y, Triplitt C, Cersosimo E, Defronzo RA. Dose-response effect of a single administration of oral hexyl-insulin monoconjugate 2 in healthy nondiabetic subjects. Diabetes Care 27(12), 2868–2873 (2004).
  • 125. Madhav M. Long-awaited dream of oral insulin: where did we reach. Asian J. Pharm. Clin. Res 4(2), 15–20 (2011).
  • 126. Khedkar A, Iyer H, Anand A et al. A dose range finding study of novel oral insulin (IN‐105) under fed conditions in type 2 diabetes mellitus subjects. Diabetes, Obesity and Metabolism 12(8), 659–664 (2010).
  • 127. Radhakrishnan Diabetes Orlando (25–30 June, 2010).
  • 128. Whitelaw DC, Kelly CA, Ironmonger W, Cunliffe C, New R, Phillips JN. Absorption of orally ingested insulin in human type 1 diabetic subjects: proof of concept study. Diabetes 54(Suppl. 1), (2005).
  • 129. Schwartz S, Geho B, Rosenberg L, Lau J. Insulin routes (SC and oral) and SC human insulin in patients with type 1 diabetes mellitus. Presented at: Diabetes 2008.
  • 130. Lau: Diasome Pharmaceuticals. Orally bioavailable lipid-based constructs. US 8,962,015. (2015). http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8962015.PN.&OS=PN/8962015&RS=PN/8962015
  • 131. Vehik K, Cuthbertson D, Ruhlig H et al. Long-term outcome of individuals treated with oral insulin: Diabetes Prevention Trial–Type 1 (DPT-1) oral insulin trial. Diabetes Care 34(7), 1585–1590 (2011).
  • 132. Van Mourik ID, Thomson M, Kelly DA. Comparison of pharmacokinetics of Neoral and Sandimmune in stable pediatric liver transplant recipients. Liver Transplant. Surg. 5(2), 107–111 (1999).
  • 133. Chiasma Pharma. www.chiasmapharma.com
  • 134. Asi Haviv: CHIASMA INC. Oral octreotide administered in combination with other therapeutic agents. US 20160193285 A1. (2016). https://patents.google.com/patent/US20160193285?oq=chiasma+Haviv
  • 135. Jensen. Tablet formulation comprising semaglutide and a delivery agent. US 9,993,430. (2018). http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9993430.PN.&OS=PN/9993430&RS=PN/9993430
  • 136. Imran M. Rani Therapeutics. www.prnewswire.com/news-releases/rani-therapeutics-announces-positive-phase-i-study-results-of-oral-octreotide-using-ranipill-300992818.html?tc=eml_cleartime
  • 137. Pharm Film Technology. https://aquestive.com/innovative-drug-delivery-pharmfilm/
  • 138. Neurelis. Neurelis Drug Delivery Technologies. www.neurelis.com/our-technologies
  • 139. Credentis.CUROLOX Technology. www.credentis.com/en/innovation-science/
  • 140. Biolingus. The OPUS Technology. www.biolingus.ch/tech_3.html#:∼:text=OPUS%20Technology,and%20%22pre%2Ddiabetes%22