We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Challenges and opportunities in dermal/transdermal delivery

    Kalpana S Paudel

    College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA

    ,
    Mikolaj Milewski

    College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA

    ,
    Courtney L Swadley

    College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA

    ,
    Nicole K Brogden

    College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA

    ,
    Priyanka Ghosh

    College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA

    &
    Published Online:https://doi.org/10.4155/tde.10.16

    Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Jain PharmaBiotech report. Transdermal drug delivery-technologies, markets and companies (2005).
    • Prausnitz MR, Langer R. Transdermal drug delivery. Nat. Biotech.26(11),1261–1268 (2008).
    • Martin E (Ed.). Remington’s Practice of Pharmacy. Mack Publishing Co, Easton, PA, USA (2003).
    • Scheindlin S. Transdermal drug delivery: past, present, future. Mol. Interv.4(6),308–312 (2004).
    • Cevc G, Vierl U. Nanotechnology and the transdermal route. A state of the art review and critical appraisal. J. Control. Release141(11),277–299 (2010).
    • Tiwary AK, Sapra B, Jain S. Innovations in transdermal drug delivery: formulations and techniques. Recent Pat. Drug Deliv. Formul.1,23–36 (2007).
    • Samad A, Ullah Z, Alam MI, Wais M, Shams MS. Transdermal drug delivery system: patent reviews. Recent Pat. Drug Deliv. Formul.3(2),143–52 (2009).
    • Rizwan M, Aqil M, Talegaonkar S, Azeem A, Sultana Y, Ali A. Enhanced transdermal drug delivery techniques: an extensive review of patents. Recent Pat. Drug Deliv. Formul.3(2),105–124 (2009).
    • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov.3(2),115–124 (2004).
    • 10  Banga AK. Microporation applications for enhancing drug delivery. Expert Opin. Drug Deliv.6(4),343–54 (2009).
    • 11  Kalluri H, Banga AK. Microneedles and transdermal drug delivery. J. Drug Del. Sci. Tech.19(5),303–310 (2009).
    • 12  Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol.9(3),165–169 (2000).
    • 13  Thong HY, Zhai H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol. Physiol.20(6) 272–282 (2007).▪ Recent review containing extensive list of popular chemical permeation enhancers.
    • 14  Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin. Theory and in vitro experimental measurement. AIChE J.21(5),985–996 (1975).
    • 15  Albery WJ, Hadgraft J. Percutaneous absorption: in vivo experiments. J. Pharm. Pharmacol.31(3),140–147 (1979).
    • 16  Tojo K. Random brick model for drug transport across stratum corneum. J. Pharm. Sci.76(12),889–891 (1987).
    • 17  Goffin V, Henry F, Pierard-Franchimont C, Pierard GE. Penetration enhancers assessed by corneoxenometry. Skin Pharmacol. Appl. Skin Physiol.13(5),280–284 (2000).
    • 18  Barry BW. Lipid–protein-partitioning theory of skin penetration enhancement. J. Control. Release15(3),237–248 (1991).
    • 19  Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl Acad. Sci. USA102(13),4688–4693 (2005).
    • 20  Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci.123–126, 369–385 (2006).
    • 21  Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol.22(2),192–197 (2004).▪▪ Identification of synergistic chemical permeation enhancer combinations through high-throughput screening.
    • 22  Karande P, Jain A, Mitragotri S. Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J. Control. Release115(1),85–93 (2006).
    • 23  Hamilton JG. Needle phobia: a neglected diagnosis. J. Fam. Practice41(2),169–175 (1995).
    • 24  Burkoth TL, Bellhouse BJ, Hewson G, Longridge DJ, Muddle AG, Sarphie DF. Transdermal and transmucosal powdered drug delivery. Crit. Rev. Ther. Drug Carrier Syst.16(4),331–384 (1999).
    • 25  Schramm J, Mitragotri S. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm. Res.19(11),1673–1679 (2002).
    • 26  Bremseth DL, Pass F. Delivery of insulin by jet injection: recent observations. Diabetes Technol. Ther.3(2),225–232 (2001).
    • 27  Denne JR, Andrews KL, Lees DV, Mook W. A survey of patient preference for insulin jet injectors versus needle and syringe. Diabetes Educ.18(3),223–227 (1992).
    • 28  Dean Hansi J, Fuller D, Osorio Jorge E. Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp. Immunol. Microbiol. Infect. Dis.26(5–6),373–388 (2003).
    • 29  Spencer JM. Microdermabrasion. Am. J. Clin. Dermatol.6(2),89–92 (2005).
    • 30  Fang JY, Lee WR, Shen SC, Fang YP, Hu CH. Enhancement of topical 5-aminolaevulinic acid delivery by erbium:YAG laser and microdermabrasion: a comparison with iontophoresis and electroporation. Br. J. Dermatol.151(1),132–140 (2004).
    • 31  Fujimoto T, Shirakami K, Tojo K. Effect of microdermabrasion on barrier capacity of stratum corneum. Chem. Pharm. Bull.53(8),1014–1016 (2005).
    • 32  Gill HS, Andrews SN, Sakthivel SK et al. Selective removal of stratum corneum by microdermabrasion to increase skin permeability. Eur. J. Pharm. Sci.38(2),95–103 (2009).
    • 33  Park JH, Lee JW, Kim YC, Prausnitz MR. The effect of heat on skin permeability. Int. J. Pharm.359(1–2),94–103 (2008).▪▪ A study of the structural disruption of skin subjected to high temperature.
    • 34  Lee WR, Shen SC, Lai HH, Hu CH, Fang JY. Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J. Control. Release75(1–2),155–166 (2001).
    • 35  Nelson JS, McCullough JL, Glenn TC, Wright WH, Liaw LH, Jacques SL. Mid-infrared laser ablation of stratum corneum enhances in vitro percutaneous transport of drugs. J. Invest. Dermatol.97(5),874–879 (1991).
    • 36  Gomez C, Costela A, Garcia-Moreno I, Llanes F, Teijon JM, Blanco D. Laser treatments on skin enhancing and controlling transdermal delivery of 5-fluorouracil. Laser Surg. Med.40(1),6–12 (2008).
    • 37  Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int. J. Pharm.364(2),227–236 (2008).
    • 38  Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci.87(8),922–925 (1998).
    • 39  Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater.20(5),933–938 (2008).
    • 40  Banks SL, Pinninti RR, Gill HS, Crooks PA, Prausnitz MR, Stinchcomb AL. Flux across microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro. Pharm. Res.25(7),1677–1685 (2008).
    • 41  Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J. Control. Release117(2),227–237 (2007).
    • 42  Lanke SSS, Kolli CS, Strom JG, Banga AK. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation. Int. J. Pharm.365(1–2),26–33 (2009).
    • 43  Wermeling DP, Banks SL, Hudson DA et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc. Natl Acad. Sci. USA105(6),2058–2063 (2008).
    • 44  Riviere JE, Heit MC. Electrically-assisted transdermal drug delivery. Pharm. Res.14(6),687–697 (1997).
    • 45  Warwick WJ, Huang NN, Waring WW et al. Evaluation of a cystic fibrosis screening system incorporating a miniature sweat stimulator and disposable chloride sensor. Clin. Chem.32(5),850–853 (1986).
    • 46  Squire SJ, Kirchhoff KT, Hissong K. Comparing two methods of topical anesthesia used before intravenous cannulation in pediatric patients. J. Pediatr. Healthcare14(2),68–72 (2000).
    • 47  Patel SR, Zhong H, Sharma A, Kalia YN. Controlled non-invasive transdermal iontophoretic delivery of zolmitriptan hydrochloride in vitro and in vivo. Eur. J. Pharm. Biopharm.72(2),304–309 (2009).
    • 48  Nakamura K, Katagai K, Mori K, Higo N, Sato S, Yamamoto K. Transdermal administration of salmon calcitonin by pulse depolarization-iontophoresis in rats. Int. J. Pharm.218(1–2),93–102 (2001).
    • 49  Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J. Control. Release89(1),127–140 (2003).
    • 50  Rastogi SK, Singh J. Transepidermal transport enhancement of insulin by lipid extraction and iontophoresis. Pharm. Res.19(4),427–433 (2002).
    • 51  Suzuki Y, Nagase Y, Iga K et al. Prevention of bone loss in ovariectomized rats by pulsatile transdermal iontophoretic administration of human PTH1–34. J. Pharm. Sci.91(2),350–361 (2002).
    • 52  Nair V, Panchagnula R. Physicochemical considerations in the iontophoretic delivery of a small peptide: in vitro studies using arginine vasopressin as a model peptide. Pharmacol. Res.48(2),175–182 (2003).
    • 53  Galinkin JL, Rose JB, Harris K, Watcha MF. Lidocaine iontophoresis versus eutectic mixture of local anesthetics (EMLA®) for IV placement in children. Anesth. Analg.94(6),1484–1488 (2002).
    • 54  Runeson L, Haker E. Iontophoresis with cortisone in the treatment of lateral epicondylalgia (tennis elbow) – a double-blind study. Scand. J. Med. Sci. Sports12(3),136–142 (2002).
    • 55  Gupta SK, Bernstein KJ, Noorduin H, Van Peer A, Sathyan G, Haak R. Fentanyl delivery from an electrotransport system: delivery is a function of total current, not duration of current. J. Clin. Pharmacol.38(10),951–958 (1998).
    • 56  Singh J, Gross M, Sage B, Davis HT, Maibach HI. Regional variations in skin barrier function and cutaneous irritation due to iontophoresis in human subjects. Food Chem. Toxicol.39(11),1079–1086 (2001).
    • 57  Prausnitz MR. A practical assessment of transdermal drug delivery by skin electroporation. Adv. Drug Deliv. Rev.35(1),61–76 (1999).
    • 58  Denet AR, Preat V. Transdermal delivery of timolol by electroporation through human skin. J. Control. Release88(2),253–262 (2003).
    • 59  Zewert TE, Pliquett UF, Vanbever R, Langer R, Weaver JC. Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule. Bioelectrochem. Bioenerg.49(1),11–20 (1999).
    • 60  Mitragotri S. Effect of therapeutic ultrasound on partition and diffusion coefficients in human stratum corneum. J. Control. Release71(1),23–29 (2001).
    • 61  Tang H, Wang CCJ, Blankschtein D, Langer R. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm. Res.19(8),1160–1169 (2002).
    • 62  Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm. Res.13(3),411–420 (1996).
    • 63  Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science269(5225),850–853 (1995).
    • 64  Mitragotri S, Edwards DA, Blankschtein D, Langer R. Mechanistic study of ultrasonically-enhanced transdermal drug-delivery. J. Pharm. Sci.84(6),697–706 (1995).
    • 65  Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R. Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J. Control. Release63(1–2),41–52 (2000).
    • 66  Cross SE, Roberts MS. Physical enhancement of transdermal drug application: is delivery technology keeping up with pharmaceutical development? Curr. Drug Delivery1(1),81–92 (2004).▪ Extensive review of the physical enhancement methods used in percutaneous drug delivery.
    • 67  Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J. Synergistic effect of electric field and ultrasound on transdermal transport. Pharm. Res.13(4),633–638 (1996).
    • 68  Riviere JE, Monteiroriviere NA, Rogers RA, Bommannan D, Tamada JA, Potts RO. Pulsatile transdermal delivery of LHRH using electroporation: drug delivery and skin toxicology. J. Control. Release36(3),229–233 (1995).
    • 69  Chang SL, Hofmann GA, Zhang L, Deftos LJ, Banga AK. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Release66(2–3),127–133 (2000).
    • 70  Prausnitz MR. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev.56(5),581–587 (2004).
    • 71  Chen H, Zhu H, Zheng J et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J. Control. Release139(1),63–72 (2009).
    • 72  Kasting GB, Smith RL, Anderson BD. In: Prodrugs: Topical and Ocular Drug Delivery. Sloan KB (Ed.). Marcel Dekker, NY, USA 117–161 (1992).▪ Discussion of prodrug design for transdermal delivery.
    • 73  Qandil A, Al-Nabulsi S, Al-Taani B, Tashtoush B. Synthesis of piperazinylalkyl ester prodrugs of ketorolac and their in vitro evaluation for transdermal delivery. Drug Dev. Ind. Pharm.34(10),1054–1063 (2008).
    • 74  Kushnir M, Yaar A, Reichman A, Heldman E. Transdermal delivery of a levodopa prodrug; a pilot clinical trial. Mov. Disord.23,592 (2008).
    • 75  Thomas JD, Majumdar S, Sloan KB. Soft alkyl ether prodrugs of a model phenolic drug: the effect of incorporation of ethyleneoxy groups on transdermal delivery. Molecules14(10),4231–4245 (2009).
    • 76  Strasinger CL, Scheff NN, Stinchcomb AL. Prodrugs and codrugs as strategies for improving percutaneous absorption. Expert Rev. Dermatol.3(2),221–233 (2008).
    • 77  Vaddi HK, Banks SL, Chen J, Hammell DC, Crooks PA, Stinchcomb AL. Human skin permeation of 3-O-alkyl carbamate prodrugs of naltrexone. J. Pharm. Sci.98(8),2611–2625 (2009).
    • 78  Kiptoo PK, Paudel KS, Hammell DC et al. Transdermal delivery of bupropion and its active metabolite, hydroxybupropion: a prodrug strategy as an alternative approach. J. Pharm. Sci.98(2),583–594 (2009).
    • 79  Murphy M, Carmichael AJ. Transdermal drug delivery systems and skin sensitivity reactions: incidence and management. Am. J. Clin. Dermatol.1(6),361–368 (2000).▪ Discusses characteristics, sources, management and prevention of skin irritation reactions caused by drug delivery systems.
    • 80  Berner B, Wilson DR, Guy RH, Mazzenga GC, Clarke FH, Maibach HI. The relationship of pka and acute skin irritation in man. Pharm. Res.5(10),660–663 (1988).
    • 81  Berner BWD, Steffens RJ, Mazzenga GC, Hinz R, Guy RH, Maibach HI. The relationship between pka and skin irritation for a series of basic penetrants in man. Fundam. Appl. Toxicol.15(4),760–766 (1990).
    • 82  Andersen PH, Nangia A, Bjerring P, Maibach HI. Chemical and pharmacologic skin irritation in man. Contact Derm.25(5),283–289 (1991).
    • 83  Mangia A, Andersen PH, Berner B, Maibach HI. High dissociation constants (pKa) of basic permeants are associated with in vivo skin irritation in man. Contact Derm.34(4),237–242 (1996).
    • 84  Johnson W. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int. J. Toxicol.26(Suppl. 1),3–106 (2007).
    • 85  Branco N, Lee I, Hongbo Z, Maibach HI. Long-term repetitive sodium lauryl sulfate-induced irritation of the skin: an in vivo study. Contact Derm.53(5),278–284 (2005).
    • 86  Fluhr JW, Darlenski R, Angelova-Fischer I, Tsankov N, Basketter D. Skin irritation and sensitization: mechanisms and new approaches for risk assessment. Skin Pharmacol. Physiol.21(3),124–135 (2008).▪ Discusses skin irritation and sensitization in detail as well as current methods used to determine their presence and extent.
    • 87  Fang JY, Tsai MJ, Huang YB, Wu PC, Tsai YH. Percutaneous absorption and skin erythema: quantification of capsaicin and its synthetic derivatives from gels incorporated with benzalkonium chloride by using non-invasive bioengineering methods. Drug Dev. Res.40(1),56–67 (1997).
    • 88  Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol.19(6),296–302 (2006).
    • 89  Antoine JL, Contreras JL, Van Neste DJ. pH influence of surfactant-induced skin irritation. Derm. Beruf Umwelt37(3),96–100 (1989).
    • 90  Ananthapadmanabhan KP, Lips A, Vincent C et al. pH-induced alterations in stratum corneum properties. Int. J. Cosmetic Sci.25(3),103–112 (2003).
    • 91  Williams A. Pharmaceutical solvents as vehicles for topical dosage forms. In: Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics (Volume 6). Augustijns P, Brewster ME (Eds). Springer, NY, USA 403–426 (2007).
    • 92  Matsumura H, Oka K, Umekage K et al. Effect of occlusion on human skin. Contact Derm.33(4),231–235 (1995).
    • 93  Homick JLKR, Reschke MF, Degioanni J, Cintron-Trevino NM. Transdermal scopolamine in the prevention of motion sickness: evaluation of the time course of efficacy. Aviat. Space Environ. Med.54(11),994–1000 (1983).
    • 94  Hurkmans JF, Bodde HE, Driel LM, Doorne HV, Junginger HE. Skin irritation caused by transdermal drug delivery systems during long-term (5 days) application. Br. J. Dermatol.112(4),461–467 (1985).
    • 95  Van der Valk PG, Maibach HI. Post-application occlusion substantially increases the irritant response of the skin to repeated short-term sodium lauryl sulfate (SLS) exposure. Contact Derm.21(5),335–338 (1989).
    • 96  Tsen-Fang T, Maibach HI. How irritant is water? An overview. Contact Derm.41(6),311–314 (1999).
    • 97  Dwyer CM, Forsyth A. Allergic contact dermatitis from methacrylates in a nicotine transdermal patch. Contact Derm.30(5),309–310 (1994).
    • 98  Ross D, Rees M, Godfree V et al. Randomised crossover comparison of skin irritation with two transdermal oestradiol patches. BMJ315(7103),288 (1997).
    • 99  Marier JF, Lor M, Potvin D, Dimarco M, Morelli G, Saedder EA. Pharmacokinetics, tolerability, and performance of a novel matrix transdermal delivery system of fentanyl relative to the commercially available reservoir formulation in healthy subjects. J. Clin. Pharmacol.46(6),642–653 (2006).
    • 100  Wester RC, Patel R, Nacht S, Leyden J, Melendres J, Maibach H. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J. Am. Acad. Dermatol.24(5 Pt 1),720–726 (1991).
    • 101  de Leeuw J, de Vijlder HC, Bjerring P, Neumann HAM. Liposomes in dermatology today. J. Eur. Acad. Dermatol.23(5),505–516 (2009).▪ Discusses the characteristics of liposome formulations, a synopsis of the state of liposome research and how liposomal formulations are impacting the field of dermal drug delivery.
    • 102  Schäfer-Korting M, Korting HC, Ponce-Pöschl E. Liposomal tretinoin for uncomplicated acne vulgaris. Clin. Invest.72(12),1086–1091 (1994).
    • 103  Zhai H, Willard P, Maibach HI. Evaluating skin-protective materials against contact irritants and allergens. Contact Derm.38(3),155–158 (1998).
    • 104  Wigger-Alberti W, Hinnen U, Elsner P. Predictive testing of metalworking fluids: a comparison of 2 cumulative human irritation models and correlation with epidemiological data. Contact Derm.6(1),14–20 (1997).
    • 105  Ben-Shabat S, Baruch N, Sintov AC. Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers. Drug Dev. Ind. Pharm.33(11),1169–1175 (2007).
    • 106  Sintov A, Ben-Shabat S. Design of fatty acid conjugates for dermal delivery and topical therapeutics. Anglais23(1),67–87 (2006).
    • 107  Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta Biomembranes1788(11),2362–2373 (2009).
    • 108  Wilson DE, Kaidbey K, Boike SC, Jorkasky DK. Use of topical corticosteroid pretreatment to reduce the incidence and severity of skin reactions associated with testosterone transdermal therapy. Clin. Ther.20(2),299–306 (1998).
    • 109  Amkraut AA, Jordan WP, Taskovich L. Effect of coadministration of corticosteroids on the development of contact sensitization. J. Am. Acad. Dermatol.35(1),27–31 (1996).
    • 110  Andersen F, Hedegaard K, Petersen TK, Bindslev-Jensen C, Fullerton A, Andersen KE. Anti-irritants I: Dose-response in acute irritation. Contact Derm.55(3),148–154 (2006).
    • 111  Andersen F, Hedegaard K, Petersen TK, Bindslev-Jensen C, Fullerton A, Andersen KE. Comparison of the effect of glycerol and triamcinolone acetonide on cumulative skin irritation in a randomized trial. J. Am. Acad. Dermatol.56(2),228–235 (2007).
    • 112  Huang YB, Tsai YH, Chang JS, Liu JC, Tsai MJ, Wu PC. Effect of antioxidants and anti-irritants on the stability, skin irritation and penetration capacity of captopril gel. Int. J. Pharm.241(2),345–351 (2002).
    • 201  Micromedex® 1.0 (Healthcare Series) Thomson Reuters www.thomsonhc.com/home (Accessed 27 February 2010)
    • 202  Rx List www.rxlist.com/script/main/hp.asp (Accessed 27 February 2010)
    • 203  Zars Pharma www.zars.com (Accessed 1 March 2010)
    • 204  Purdue Pharma L.P. www.purduepharma.com (Accessed 28 February 2010)
    • 205  NuPathe® Inc. www.nupathe.com (Accessed 28 February 2010)
    • 206  ClinicalTrials.gov www.clinicaltrials.gov (Accessed 28 February 2010)
    • 207  DURECT www.durect.com (Accessed 28 February 2010)
    • 208  TransPharma Medical™ www.transpharma-medical.com (Accessed 28 February 2010)
    • 209  Drugs@FDA www.accessdata.fda.gov/Scripts/cder/DrugsatFDA (Accessed 27 February 2010)
    • 210  European Medicines Agency. European Medicines Agency recommends the suspension of the marketing authorisation of IONSYS (fentanyl hydrochloride) (2008) www.ema.europa.eu/humandocs/PDFs/EPAR/ionsys/61385208en.pdf (Accessed 28 February 2010)
    • 211  Drugs.com www.Drugs.com (Accessed 27 February 2010)
    • 212  DailyMed www.Dailymed.nlm.nih.gov (Accessed 27 February 2010)