We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Engineering antiphagocytic biomimetic drug carriers

    Alicia Sawdon

    Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA

    &
    Ching-An Peng

    * Author for correspondence

    Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA.

    Published Online:https://doi.org/10.4155/tde.13.54

    Drug-delivery carriers have the potential to not only treat but also diagnose many diseases; however, they still lack the complexity of natural-particulate systems. Cell-based therapies using tumor-targeting T cells and tumor-homing mesenchymal stem cells have given researchers a means to exploit the characteristics exhibited by innate-biological entities. Similarly, immune evasion by pathogens has inspired the development of natural polymers to cloak drug carriers. The ‘marker-of-self’ CD47 protein, which is found ubiquitously on mammalian cell surfaces, has been used for evading phagocyte clearance of drug carriers. This review will focus on the recent progress of drug carriers co-opting the tricks that cells in nature use to hide safely under the radar of the body’s innate immune system.

    References

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm.50(1),161–177 (2000).Crossref, Medline, CASGoogle Scholar
    • Kalachandra S, Takamata T, Lin D, Snyder E, Webster-Cyriaque J. Stability and release of antiviral drugs from ethylene vinyl acetate (EVA) copolymer. J. Mater. Sci. Mater. Med.17(12),1227–1236 (2006).Crossref, Medline, CASGoogle Scholar
    • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer6(9),688–701 (2006).Crossref, Medline, CASGoogle Scholar
    • Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev.58(14),1456–1459 (2006).Crossref, Medline, CASGoogle Scholar
    • Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev.65(1),60–70 (2013).Crossref, Medline, CASGoogle Scholar
    • Plummer R, Wilson RH, Calvert H et al. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours. Br. J. Cancer104(4),593–598 (2011).Crossref, Medline, CASGoogle Scholar
    • Blanco E, Hsiao A, Ruiz-Esparza GU et al. Molecular-targeted nanotherapies in cancer: Enabling treatment specificity. Mol. Oncol.5(6),492–503 (2011).Crossref, Medline, CASGoogle Scholar
    • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov.9(8),615–627 (2010).Crossref, Medline, CASGoogle Scholar
    • Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov.10(7),521–535 (2011).Crossref, Medline, CASGoogle Scholar
    • 10  Verma P, Thakur A, Deshmukh K, Jha A, Verma S. Routes of drug administration. Int. J. Pharm. Studies Res.1(1),54–59 (2010).Google Scholar
    • 11  Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond.)5(2),287–306 (2010).Crossref, Medline, CASGoogle Scholar
    • 12  Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev.56(11),1649–1659 (2012).CrossrefGoogle Scholar
    • 13  Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release121(1–2),3–9 (2007).Crossref, Medline, CASGoogle Scholar
    • 14  Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther. Deliv.3(2),181–194 (2012).Link, CASGoogle Scholar
    • 15  Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev.16(2–3),195–214 (1995).Crossref, CASGoogle Scholar
    • 16  Abra RM, Bosworth ME, Hunt CA. Liposome disposition in vivo: effects of pre-dosing with lipsomes. Res. Commun. Chem. Pathol. Pharmacol.29(2),349–360 (1980).Medline, CASGoogle Scholar
    • 17  Harris JM, Chess RB. Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov.2(3),214–221 (2003).Crossref, Medline, CASGoogle Scholar
    • 18  Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov. Today10(21),1451–1458 (2005).Crossref, Medline, CASGoogle Scholar
    • 19  Singh P, Gupta U, Asthana A, Jain NK. Folate and folate–PEG–PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem.19(11),2239–2252 (2008).Crossref, Medline, CASGoogle Scholar
    • 20  Chow TH, Lin YY, Hwang JJ et al. Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model. Anticancer Res.29(6),2111–2120 (2009).Medline, CASGoogle Scholar
    • 21  Bohl Kullberg E, Bergstrand N, Carlsson J et al. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjug. Chem.13(4),737–743 (2002).Crossref, MedlineGoogle Scholar
    • 22  Wang J, Peng CA. Anticancer effectiveness of polymeric drug nanocarriers on colorectal cancer cells. Conf. Proc. IEEE Eng. Med. Biol. Soc.52(10),6090883 (2011).Google Scholar
    • 23  Koo AN, Min KH, Lee HJ et al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials33(5),1489–1499 (2012).Crossref, Medline, CASGoogle Scholar
    • 24  Kang JS, Deluca PP, Lee KC. Emerging PEGylated drugs. Expert Opin. Emerg. Drugs14(2),363–380 (2009).Crossref, Medline, CASGoogle Scholar
    • 25  Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev.61(13),1203–1213 (2009).Crossref, Medline, CASGoogle Scholar
    • 26  Yang C, Lu D, Liu Z. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation. Biochemistry50(13),2585–2593 (2011).Crossref, Medline, CASGoogle Scholar
    • 27  Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev.54(4),531–545 (2002).Crossref, Medline, CASGoogle Scholar
    • 28  Eto Y, Yoshioka Y, Mukai Y, Okada N, Nakagawa S. Development of PEGylated adenovirus vector with targeting ligand. Int. J. Pharm.354(1–2),3–8 (2008).Crossref, Medline, CASGoogle Scholar
    • 29  Fisher KD, Seymour LW. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Deliv. Rev.62(2),240–245 (2010).Crossref, Medline, CASGoogle Scholar
    • 30  Pike DB, Ghandehari H. HPMA copolymer–cyclic RGD conjugates for tumor targeting. Adv. Drug Deliv. Rev.62(2),167–183 (2010).Crossref, Medline, CASGoogle Scholar
    • 31  Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem. Int. Ed. Engl.49(36),6288–6308 (2010).▪ Advantages and disadvantages of PEGylation are thoroughly discussed.Crossref, Medline, CASGoogle Scholar
    • 32  Lammers T, Ulbrich K. HPMA copolymers: 30 years of advances. Adv. Drug Deliv. Rev.62(2),119–121 (2010).Crossref, Medline, CASGoogle Scholar
    • 33  Kopeček J, Kopečková P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev.62(2),122–149 (2010).Crossref, Medline, CASGoogle Scholar
    • 34  Evans EA. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol.173,3–35 (1989).Crossref, Medline, CASGoogle Scholar
    • 35  Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell124(4),767–782 (2006).Crossref, Medline, CASGoogle Scholar
    • 36  Swann JB, Smyth MJ. Immune surveillance of tumors. J. Clin. Invest.117(5),1137–1146 (2007).Crossref, Medline, CASGoogle Scholar
    • 37  Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol.11(9),785–797 (2010).Crossref, Medline, CASGoogle Scholar
    • 38  Klein G. Immune and non-immune surveillance in cancer. Atlas Genet. Cytogenet. Oncol. Haematol.17,114–147 (2013).Google Scholar
    • 39  Chen K, Xu W, Wilson M et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol.10(8),889–898 (2009).Crossref, Medline, CASGoogle Scholar
    • 40  Chin AI, Miyahira AK, Covarrubias A et al. Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res.70(7),2595–2603 (2010).Crossref, Medline, CASGoogle Scholar
    • 41  Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc. Natl Acad. Sci. USA70(9),2663–2666 (1973).Crossref, Medline, CASGoogle Scholar
    • 42  Sprandel U, Hubbard AR, Chalmers RA. In vitro studies on resealed erythrocyte ghosts as protein carriers. Res. Exp. Med.175(3),239–245 (1979).Crossref, Medline, CASGoogle Scholar
    • 43  Oldenborg PA, Zheleznyak A, Fang YF et al. Role of CD47 as a marker of self on red blood cells. Science288(5473),2051–2054 (2000).▪ First artcle showing that CD47 functioned as a marker-of-self on red blood cells as well as a discussion of the CD47–SIRPα interaction.Crossref, Medline, CASGoogle Scholar
    • 44  Khandelwal S, Van Rooijen N, Saxena Rajiv K. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion47(9),1725–1732 (2007).Crossref, MedlineGoogle Scholar
    • 45  Soto-Pantoja DR, Stein EV, Rogers NM et al. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin. Ther. Targets17(1),89–103 (2013).Crossref, Medline, CASGoogle Scholar
    • 46  Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol.11(3),130–135 (2001).Crossref, Medline, CASGoogle Scholar
    • 47  Oldenborg PA. CD47: A cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematol.2013,614619 (2013).Crossref, MedlineGoogle Scholar
    • 48  Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells21(1),105–110 (2003).Crossref, MedlineGoogle Scholar
    • 49  Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev.64(8),739–748 (2012).▪ In-depth review of current mesenchymal stem cell-based cancer therapies and their clinical impact.Crossref, Medline, CASGoogle Scholar
    • 50  Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418(6893),41–49 (2002).Crossref, Medline, CASGoogle Scholar
    • 51  Corsten MF, Shah K. Therapeutic stem cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol.9(4),376–384 (2008).Crossref, MedlineGoogle Scholar
    • 52  Momin EN, Vela G, Zaidi HA, Quinones-Hinojosa A. The oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr. Immunol. Rev.6(2),137–148 (2010).Crossref, Medline, CASGoogle Scholar
    • 53  Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy. Mol. Pharm.8(5),1480–1487 (2011).Crossref, Medline, CASGoogle Scholar
    • 54  Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature319(6055),675–678 (1986).Crossref, Medline, CASGoogle Scholar
    • 55  Batista FD, Dustin ML. Cell:cell interactions in the immune system. Immunol. Rev.251(1),7–12 (2013).Crossref, Medline, CASGoogle Scholar
    • 56  Chao MP, Alizadeh AA, Tang C et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell142(5),699–713 (2010).Crossref, Medline, CASGoogle Scholar
    • 57  Willingham SB, Volkmer JP, Gentles AJ et al. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA109(17),6662–6667 (2012).▪ CD47 expression on tumor cells is used as a target for cancer therapies.Crossref, Medline, CASGoogle Scholar
    • 58  Zhao XW, van Beek EM, Schornagel K et al. CD47–signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc. Natl Acad. Sci. USA108(45),18342–18347 (2011).Crossref, Medline, CASGoogle Scholar
    • 59  Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol.31(6),212–219 (2010).Crossref, Medline, CASGoogle Scholar
    • 60  Rosenberger CM, Finlay BB. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat. Rev. Mol. Cell Biol.4(5),385–396 (2003).Crossref, Medline, CASGoogle Scholar
    • 61  Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell109(5),575–588 (2002).Crossref, Medline, CASGoogle Scholar
    • 62  Biedzka-Sarek M, Jarva H, Hyytiäinen H, Meri S, Skurnik M. Characterization of complement factor H binding to Yersinia enterocolitica serotype O:3. Infect. Immun.76(9),4100–4109 (2008).Crossref, Medline, CASGoogle Scholar
    • 63  Rooijakkers SH, van Strijp JA. Bacterial complement evasion. Mol. Immunol.44(1–3),23–32 (2007).Crossref, Medline, CASGoogle Scholar
    • 64  Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol.297(5),277–295 (2007).Crossref, Medline, CASGoogle Scholar
    • 65  Dale JB, Washburn RG, Marques MB, Wessels MR. Hyaluronate capsule and surface M protein in resistance to opsonization of group A Streptococci.Infect. Immun.64(5),1495–1501 (1996).Crossref, Medline, CASGoogle Scholar
    • 66  Moses AE, Wessels MR, Zalcman K et al. Relative contributions of hyaluronic acid capsule and M protein to virulence in a mucoid strain of the group A Streptococcus. Infect. Immun.65(1),64–71 (1997).Crossref, Medline, CASGoogle Scholar
    • 67  Reitter JN, Means RE, Desrosiers RC. A role for carbohydrates in immune evasion in AIDS. Nat. Med.4(6),679–684 (1998).Crossref, Medline, CASGoogle Scholar
    • 68  Hu CMJ, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv. Healthc. Mater.1(5),537–547 (2012).Crossref, Medline, CASGoogle Scholar
    • 69  Bax BE, Bain MD, Talbot PJ, Parker-Williams EJ, Chalmers RA. Survival of human carrier erythrocytes in vivo.Clin. Sci.96(2),171–178 (1999).Crossref, Medline, CASGoogle Scholar
    • 70  Godfrin Y, Horand F, Franco R et al. International seminar on the red blood cells as vehicles for drugs. Expert Opin. Biol. Ther.12(1),127–133 (2012).Crossref, MedlineGoogle Scholar
    • 71  Magnani M. Erythrocytes as carriers for drugs: the transition from the laboratory to the clinic is approaching. Expert Opin. Biol. Ther.12(2),137–138 (2012).Crossref, Medline, CASGoogle Scholar
    • 72  Domenech C, Thomas X, Chabaud S et al. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–2001 randomized trial. Br. J. Haematol.153(1),58–65 (2011).Crossref, Medline, CASGoogle Scholar
    • 73  Moran NF, Bain MD, Muqit MM, Bax BE. Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology71(9),686–688 (2008).Crossref, Medline, CASGoogle Scholar
    • 74  Kim SH, Kim EJ, Hou JH et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials30(5),959–967 (2009).Crossref, MedlineGoogle Scholar
    • 75  Byun HM, Suh D, Yoon H et al. Erythrocyte ghost-mediated gene delivery for prolonged and blood-targeted expression. Gene Ther.11(5),492–496 (2004).Crossref, Medline, CASGoogle Scholar
    • 76  Kwon YM, Chung HS, Moon C et al. l-asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release139(3),182–189 (2009).Crossref, Medline, CASGoogle Scholar
    • 77  Delcea M, Sternberg N, Yashchenok AM et al. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano6(5),4169–4180 (2012).Crossref, Medline, CASGoogle Scholar
    • 78  Cinti C, Taranta M, Naldi I, Grimaldi S. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds. PLoS ONE6(2),0017132 (2011).CrossrefGoogle Scholar
    • 79  Lejeune A, Poyet P, Gaudreault RC, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: III. Is phagocytosis involved in the mechanism of action? Anticancer Res.17(5A),3599–3603 (1997).Medline, CASGoogle Scholar
    • 80  Hu CMJ, Zhang L, Aryal S et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA108(27),10980–10985 (2011).▪▪ First paper showing that nanoparticles can be coated with erythrocyte membranes while still keeping the membrane proteins and lipids intact.Crossref, Medline, CASGoogle Scholar
    • 81  Zaitsev S, Danielyan K, Murciano JC et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood108(6),1895–1902 (2006).Crossref, Medline, CASGoogle Scholar
    • 82  Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp. Biol. Med.232(7),958–966 (2007).CASGoogle Scholar
    • 83  Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA106(51),21495–21499 (2009).Crossref, Medline, CASGoogle Scholar
    • 84  Merkel TJ, Jones SW, Herlihy KP et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA108(2),586–591 (2011).Crossref, Medline, CASGoogle Scholar
    • 85  Marin V, Dander E, Biagi E et al. Characterization of in vitro migratory properties of anti-CD19 chimeric receptor-redirected CIK cells for their potential use in B-ALL immunotherapy. Exp. Hematol.34(9),1218–1228 (2006).CrossrefGoogle Scholar
    • 86  Chan JK, Hamilton CA, Cheung MK et al. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Clin. Cancer Res.12(6),1859–1867 (2006).Crossref, Medline, CASGoogle Scholar
    • 87  Mesiano G, Todorovic M, Gammaitoni L et al. Cytokine-induced killer (CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert Opin. Biol. Ther.12(6),673–684 (2012).Crossref, Medline, CASGoogle Scholar
    • 88  Koh MBC, Ching Linn Y. Clinical expansion of cytokine induced killer (CIK) cells. ISBT Sci. Ser.7(1),154–156 (2012).Crossref, CASGoogle Scholar
    • 89  Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS. A Phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol. Blood Marrow Transplant.11(3),181–187 (2005).Crossref, MedlineGoogle Scholar
    • 90  Linn YC, Yong HX, Niam M et al. A Phase I/II clinical trial of autologous cytokine-induced killer cells as adjuvant immunotherapy for acute and chronic myeloid leukemia in clinical remission. Cytotherapy14(7),851–859 (2012).Crossref, Medline, CASGoogle Scholar
    • 91  Verneris MR, Baker J, Edinger M, Negrin RS. Studies of ex vivo activated and expanded CD8+ NK-T cells in humans and mice. J. Clin. Immunol.22(3),131–136 (2002).Crossref, Medline, CASGoogle Scholar
    • 92  Kerkar SP, Muranski P, Kaiser A et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hoststs. Cancer Res.70(17),6725–6734 (2010).Crossref, Medline, CASGoogle Scholar
    • 93  Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol.31(1),71–75 (2013).Crossref, Medline, CASGoogle Scholar
    • 94  Qiao L, Xu Z, Zhao T et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res.18(4),500–507 (2008).Crossref, Medline, CASGoogle Scholar
    • 95  Menon LG, Picinich S, Koneru R et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells25(2),520–528 (2007).Crossref, Medline, CASGoogle Scholar
    • 96  Chen X, Lin X, Zhao J et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther.16(4),749–756 (2008).Crossref, Medline, CASGoogle Scholar
    • 97  Okada H, Pollack IF. Cytokine gene therapy for malignant glioma. Expert Opin. Biol. Ther.4(10),1609–1620 (2004).Crossref, Medline, CASGoogle Scholar
    • 98  Nakamura K, Ito Y, Kawano Y et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther.11(14),1155–1164 (2004).Crossref, Medline, CASGoogle Scholar
    • 99  Gunnarsson S, Bexell D, Svensson A et al. Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNγ-transduced tumor cell immunotherapy of experimental glioma. J. Neuroimmunol.218(1–2),140–144 (2010).Crossref, Medline, CASGoogle Scholar
    • 100  Danks MK, Yoon KJ, Bush RA et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res.67(1),22–25 (2007).Crossref, Medline, CASGoogle Scholar
    • 101  Aboody KS, Brown A, Rainov NG et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl Acad. Sci. USA97(23),12846–12851 (2000).Crossref, Medline, CASGoogle Scholar
    • 102  Kosaka H, Ichikawa T, Kurozumi K et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther.19(8),572–578 (2012).Crossref, Medline, CASGoogle Scholar
    • 103  Fei S, Qi X, Kedong S et al. The antitumor effect of mesenchymal stem cells transduced with a lentiviral vector expressing cytosine deaminase in a rat glioma model. J. Cancer Res. Clin. Oncol.138(2),347–357 (2012).Crossref, MedlineGoogle Scholar
    • 104  Mori K, Iwata J, Miyazaki M et al. Bystander killing effect of thymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells. Neurol. Med. Chir.50(7),545–553 (2010).Crossref, MedlineGoogle Scholar
    • 105  Nakashima H, Kaur B, Chiocca EA. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev.21(2–3),119–126 (2010).Crossref, Medline, CASGoogle Scholar
    • 106  Willmon C, Harrington K, Kottke T et al. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol. Ther.17(10),1667–1676 (2009).Crossref, Medline, CASGoogle Scholar
    • 107  Ilett EJ, Prestwich RJ, Kottke T et al. Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther.16(5),689–699 (2009).Crossref, Medline, CASGoogle Scholar
    • 108  Garcia-Castro J, Alemany R, Cascallo M et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther.17(7),476–483 (2010).Crossref, Medline, CASGoogle Scholar
    • 109  Yong RL, Shinojima N, Fueyo J et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res.69(23),8932–8940 (2009).Crossref, Medline, CASGoogle Scholar
    • 110  Pain D, Das PK, Ghosh P, Bachhawat BK. Increased circulatory half-life of liposomes after conjunction with dextran. J. Biosci.6(6),811–816 (1984).Crossref, CASGoogle Scholar
    • 111  Sarwat F, Ul Qader SA, Aman A, Ahmed N. Production and characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int. J. Biol. Sci.4(6),379–386 (2008).Crossref, Medline, CASGoogle Scholar
    • 112  McCahon R, Hardman J. Pharmacology of plasma expanders. Anaesth. Intensive Care11(2),75–77 (2010).CrossrefGoogle Scholar
    • 113  Tu J, Zhong S, Li P. Studies on acyclovir–dextran conjugate: synthesis and pharmacokinetics. Drug Dev. Ind. Pharm.30(9),959–965 (2004).Crossref, Medline, CASGoogle Scholar
    • 114  Houga CM, Giermanska J, Lecommandoux SB et al. Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers. Biomacromolecules10(1),32–40 (2008).CrossrefGoogle Scholar
    • 115  Ma WJ, Yuan XB, Kang CS et al. Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydr. Polym.72(1),75–81 (2008).Crossref, CASGoogle Scholar
    • 116  Passirani C, Barratt G, Devissaguet JP, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res.15(7),1046–1050 (1998).Crossref, Medline, CASGoogle Scholar
    • 117  Chao Y, Makale M, Karmali PP et al. Recognition of dextran–superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug. Chem.23(5),1003–1009 (2012).Crossref, Medline, CASGoogle Scholar
    • 118  Gonçalves C, Martins JA, Gama FM. Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. Biomacromolecules8(2),392–398 (2007).Crossref, Medline, CASGoogle Scholar
    • 119  Gonçalves C, Torrado E, Martins T et al. Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf. B75(2),483–489 (2010).Crossref, Medline, CASGoogle Scholar
    • 120  Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer108(5),780–789 (2004).Crossref, Medline, CASGoogle Scholar
    • 121  Mizrahy S, Raz SR, Hasgaard M et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release156(2),231–238 (2011).Crossref, Medline, CASGoogle Scholar
    • 122  Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Immunol. Today21(9),447–455 (2000).Crossref, Medline, CASGoogle Scholar
    • 123  Rema RB, Rajendran K, Ragunathan M. Angiogenic efficacy of Heparin on chick chorioallantoic membrane. Vasc. Cell4(1),4–8 (2012).Crossref, MedlineGoogle Scholar
    • 124  Berry D, Shriver Z, Natke B et al. Heparan sulphate glycosaminoglycans derived from endothelial cells and smooth muscle cells differentially modulate fibroblast growth factor-2 biological activity through fibroblast growth factor receptor-1. Biochem. J.373,241–249 (2003).Crossref, Medline, CASGoogle Scholar
    • 125  Wang Z, Ly M, Zhang F et al.E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol. Bioeng.107(6),964–973 (2010).Crossref, Medline, CASGoogle Scholar
    • 126  Kemp MM, Linhardt RJ. Heparin-based nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2(1),77–87 (2010).Crossref, Medline, CASGoogle Scholar
    • 127  Nguyen TH, Kim SH, Decker CG et al. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nat. Chem.5(3),221–227 (2013).Crossref, Medline, CASGoogle Scholar
    • 128  Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2),283–318 (2001).▪▪ Strategies for fabricating drug carriers with long-circulating and site-targeting features are discussed. The ability of microorganisms to evade macrophage recognition is also explored.Medline, CASGoogle Scholar
    • 129  Hsu YC, Acuña M, Tahara S, Peng CA. Reduced phagocytosis of colloidal carriers using soluble CD47. Pharm. Res.20(10),1539–1542 (2003).▪ First article to use soluble CD47 to demonstrate antiphagocytic effect to microparticles.Crossref, Medline, CASGoogle Scholar
    • 130  Tsai RK, Discher DE. Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol.180(5),989–1003 (2008).Crossref, Medline, CASGoogle Scholar
    • 131  Rodriguez PL, Harada T, Christian DA et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science339(6122),971–975 (2013).▪▪ ‘Self’ peptide from CD47 was synthesized and demonstrated antiphagocytic effect to nanoparticles.Crossref, Medline, CASGoogle Scholar
    • 132  Ishihara T, Takeda M, Sakamoto H et al. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res.26(10),2270–2279 (2009).Crossref, Medline, CASGoogle Scholar
    • 133  Sroda K, Rydlewski J, Langner M et al. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell. Mol. Biol. Lett.10(1),37–47 (2005).Medline, CASGoogle Scholar
    • 134  Armstrong JK, Hempel G, Koling S et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer110(1),103–111 (2007).Crossref, MedlineGoogle Scholar
    • 135  Schellenberger V, Wang CW, Geething NC et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat. Biotechnol.27(12),1186–1190 (2009).Crossref, Medline, CASGoogle Scholar
    • 136  Geething NC, To W, Spink BJ et al. Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose. PLoS ONE5(4),0010175 (2010).CrossrefGoogle Scholar
    • 137  Garratty G. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang.94(2),87–95 (2008).Medline, CASGoogle Scholar
    • 138  Barry MA, Campos SK, Ghosh D et al. Biotinylated gene therapy vectors. Expert Opin. Biol. Ther.3(6),925–940 (2003).Crossref, Medline, CASGoogle Scholar
    • 139  Murphy EA, Majeti BK, Barnes LA et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl Acad. Sci. USA105(27),9343–9348 (2008).Crossref, Medline, CASGoogle Scholar
    • 201  XL-protein. www.xl-protein.comGoogle Scholar
    • 202  Amunix. www.amunix.comGoogle Scholar