We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
ReviewOpen Accesscc iconby icon

Analysis of insoluble proteins

    Sarah Trimpin

    Department of Chemistry, Wayne State University, Department of Chemistry, Detroit, Michigan, USA

    &
    Bill Brizzard

    *Address correspondence to Bill Brizzard, Indiana University Research and Technology Corporation, 501 North Morton Street, Suite 204, Bloomington, IN, 47401, USA. email:

    E-mail Address: bbrizzar@iu.edu

    Indiana University Research and Technology Corporation, Bloomington, Indiana, USA

    Published Online:https://doi.org/10.2144/000113168

    The analysis of insoluble proteins represents a major technical challenge for the field of proteomics. For example, membrane proteins are often insoluble in common solvents and represent 20–30% of the proteins encoded by the human genome. Chemical analysis on an individual basis is often required and is laborious and time-consuming. This review presents an overview of methods for purification of expressed proteins using fusion tags as well as methods for analysis of insoluble proteins by mass spectrometry with a goal of achieving high-throughput analysis.

    References

    • 1. Muller, A., R.M. MacCallum, and M.J.E. Sternberg. 2002. Structural characterization of the human proteome. Genome Research 12:1625–1641.
    • 2. Bucciantini, M., E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddie, G. Ramponi, et al.. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511.
    • 3. Wallin, E. and G. Von Heijne. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7:1029–1038.
    • 4. Stevens, T.J. and I.T. Arkin. 2000. Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins 39:417–420.
    • 5. Wu, C.C., and J.R. Yates, III. 2003. The application of mass spectrometry to membrane proteomics. Nature Biotechnology 21:262–267.
    • 6. Li, K.W. and A.B. Smit. 2007. Proteomics of brain synapses and molecular dissection of synaptic subdomains. Proteomics Clin. Appl. 1:1476–1484.
    • 7. Hartley, J.L., G.F. Temple, and M.A. Brasch. 2000. DNA cloning using invitro site-specific recombination. Genome Research 10:1788–1795.
    • 8. Padan, E., C. Hunte, and H. Reilander. 2003. Production and purification of recombinant membrane proteins, p. 55–83. In C. Hu, G. von Jagow, and H. Schagger (Eds.), Membrane Protein Purification and Crystalization A Practical Guide. Academic Press, San Diego.
    • 9. Korf, U., T. Kohl, H. Van der Zandt, R. Zahn, S. Schleeger, B. Ueberle, S. Wandschneider, S. Bechtel, et al.. 2005. Large-scale protein expression for proteome research. Proteomics 5:3571–3580.
    • 10. Hochuli, E., W. Bannarth, H. Dobeli, R. Gentz, and D. Stuber. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biol. Technology 6:1321–1325.
    • 11. Holzinger, A., K.S. Phillips, and T.E. Weaver. 1996. Single-step purification/solubilization of recombinant proteins: application to surfactant protein B. BioTechniques 20:804–806.
    • 12. LaVallie, E.R., E.A. DiBlasio, S. Kovacic, K.L. Grant, P.F. Schendel, and J.M. McCoy. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biol. Technology 11:187–93.
    • 13. Harrison, R. G. 2000. Expression of soluble heterologous proteins via fusion with NusA protein. Innovations 11:4–7.
    • 14. Klammt, C., F. Lohr, B. Schafer, W. Haase, V. Dotsch, H. Ruterjans, C. Glaubitz, and F. Bernhard. 2004. High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem. 271:568–580.
    • 15. Mei, Q., C.K. Fredrickson, A. Simon, R. Khnouf, and Z. H. Fan. 2007. Cell free protein synthesis in microfluidic array devices. Biotechnol. Prog. 23:1305–1311.
    • 16. Sorensen, H.P. and K.K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnology 115:113–128.
    • 17. Brookes, P.S., A. Pinner, A. Ramachandran, L. Coward, S. Barnes, H. Kim, and V.M. Darley-Usmar. 2002. High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2:969–977.
    • 18. Zischa, H., C.J. Gloeckner, C. Klein, S. Willmann, M. Swiatek-de Lange, and M. Ueffing. 2004. Improved mass spectrometric identification of gel-separated hydrophobic membrane proteins after sodium dodecyl sulfate removal by ion-pair extraction. Proteomics 4:3776–3782.
    • 19. Klein, C., C. Garcia-Rizo, B. Bisle, B. Scheffer, H. Zischka, F. Pfeiffer, F. Siedler, and D. Oesterhelt. 2005. The membrane proteome of Halobacterium salinarum. Proteomics 5:180–197.
    • 20. Bisle, B., A. Schmidt, B. Scheibe, C. Klein, A. Tebbe, J. Kellermann, F. Siedler, F. Pfeiffer, F. Lottspeich, and D. Oesterhelt. 2006. Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol. Cell. Proteomics 5:1543–1558.
    • 21. Poetsch, A., D. Schlüsener, C. Florizone, L. Eltis, C. Menzel, M. Rögner, K. Steinert, and U. Roth. 2008. Improved identification of membrane proteins by MALDI-TOF MS/MS using vacuum sublimated matrix spots on an ultraphobic chip surface. J. Biomol. Tech. 19:129–138.
    • 22. Weiner, J.H. and L. Li. 2008. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim. Biophys. Acta 1778:1698–1713.
    • 23. Pan, Y., B.B. Stocks, L. Brown, and L. Konermann. 2009. Structural characterization of an integral membrane protein in its natural lipid environment by oxidative methionine labeling and mass spectrometry. Anal. Chem. 81:28–35.
    • 24. Washburn, M.P., D. Wolters, and J.R. Yates, III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242–247.
    • 25. Lin, D., A.J. Alpert, and J.R. Yates, III. 2001. Multidimensional protein identification technology as an effective tool for proteomics. Am. Genomic/Proteomic Technol. 1:38–46.
    • 26. Larsen, M.R., M.B. Trelle, T.E. Thingholm, and O.N. Jensen. 2006. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. BioTechniques. 40:790–798.
    • 27. Turecek, F. 2001. Mass spectrometry in coupling with affinity capture-release and isotope-coded affinity tags for Quantitative protein analysis. J. Mass Spectrom. 37:1–14.
    • 28. Ono, M., M. Shitashige, K. Honda, T. Isobe, H. Kuwabara, H. Matsuzuki, S. Hirohashi, and T. Yamada. 2006. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics. 5:1338–47.
    • 29. Zubarev, R., N.L. Kelleher, and F.W. McLafferty. 1998. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120:3265–3266.
    • 30. Syka, J.E.P., J.J. Coons, M.J. Schroeder, J. Shabanowitz, and D.F. Hunt. 2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. 101:9528–9533.
    • 31. Smalley, D.M. and K. Ley. 2008. Plasma-derived microparticles for biomarker discovery. Clin Lab. 54:67–79.
    • 32. Hachey, D.L. and P. Chaurand. 2004. Proteomics in reproductive medicine: the technology for separation and identification of proteins. J. Reprod. Immunol. 63:61–73.
    • 33. Lohaus, C., A. Nolte, M. Blüggel, C. Scheer, J. Klose, J. Gobom, A. Schüler, T. Wiebringhaus, H.E. Meyer, and K. Marcus. 2007. Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain. J. Proteome Res. 6:105–113.
    • 34. McComb, M.E., D.H. Perlman, H. Huang, and C.E. Costello. 2007. Evaluation of an on-target sample preparation system for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in conjunction with normal-flow peptide high-performance liquid chromatography for peptide mass fingerprint analyses. Rapid Commun. Mass Spectrom. 21:44–58.
    • 35. Yamashita, M. and J.B. Fenn. 1984. Electrospray ion source. Another viariation on the free-jet theme. J. Phys. Chem. 88:4671–4675.
    • 36. Tanaka, K., H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T. Yoshida. 1988. Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–153.
    • 37. Karas, M. and F. Hillenkamp. 1988. Laser desprption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60:2299–2301.
    • 38. Li, L., R.W. Garden, and J.V. Sweedler. 2000. Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol. 18:151–160.
    • 39. Stoeckli, M., P. Chaurand, D.E. Hallahan, and R.M. Caprioli. 2001. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nature Med. 7:493–496.
    • 40. Rohner, T.C., D. Staab, and M. Stoeckli. 2004. MALDI mass spectrometric imaging biological tissue sections. Mech. Ageing Dev. 126:177–185.
    • 41. McDonnell, L.A. and R.M. Heeren. 2007. Imaging mass spectrometry. Mass Spectrom Rev. 26:606–643.
    • 42. Cornett, D. S., M. L. Reyzer, P. Chaurand, and R. M. Caprioli. 2007. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nature Methods 4:828–833.
    • 43. Fournier, I., M. Wisztorski, and M. Salzet. 2008. Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Review of Proteomics 5:413–424.
    • 44. Khatib-Shahidi, S., M. Andersson, J. L. Herman, T. A. Gillespie, and R. M. Caprioli. 2006. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 78:6448–6456.
    • 45. Chaurand, P., D. S. Cornett, and R. M. Caprioli. 2006. Molecular imaging of thin mammalian tissue sections by mass spectrometry. Curr. Opin. Biotechnol. 17:431–436.
    • 46. Pierson, J., J.L. Norris, H-R. Aerni, P. Svenningsson, R.M. Caprioli, and P.E. Andren. 2004. Molecular profiling of experimental Parkinson's disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J. Proteome Res. 3:289–295.
    • 47. Chaurand, P., S.A. Schwartz, and R.M. Caprioli. 2004. Assessing protein patterns in disease using imaging mass spectrometry. J. Proteome Res. 3:245–252.
    • 48. Chaurand, P., S.A. Schwartz, and R.M. Caprioli. 2004. Profiling and imaging proteins in tissue sections by MS. Anal. Chem. 76:86A–93A.
    • 49. He, F., M.R. Emmett, K. Håkansson, C.L. Hendrickson, and A.G. Marshall. 2004. Theoretical and experimental prospects for protein identification based solely on accurate mass measurement. J. Proteome Res. 3:61–67.
    • 50. Fu, M., P. Duan, S. Li, S.C. Habicht, D.S. Pinkston, N.R. Vinueza, and H.I. Kenttämaa. 2008. Regioselective ion-molecule reactions for the mass spectrometric differentiation of protonated isomeric aromatic diamines. Analyst. 133:452–454.
    • 51. Trimpin, S., A.E. Mixon, M. Stapels, M.-Y. Kim, P.S. Spencer, and M.L. Deinzer. 2004. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry. Biochemistry 43:2091–2105.
    • 52. Zhang, Y., E. P. Go, H. Jiang, and H. Desaire. 2005. A novel mass spectrometric method to distinguish isobaric monosaccharides that are phosphorylated or sulfated using ion-pairing reagents. J. Am. Soc. Mass Spectrom. 16:1827–1839.
    • 53. Trimpin, S. and M.L. Deinzer. 2005. Solvent-free mass spectrometry for hydro-phobic peptide sequence analysis and protein conformation studies. BioTechniques. 39:799–805.
    • 54. Trimpin, S. 2006. Solvent-free matrix-assisted laser desorption ionization, p. 683–689. In M.L. Gross and R.M. Caprioli (Eds.), Encyclopedia of Mass Spectrometry: Molecular Ionization, Vol. 6. Elsevier, Amsterdam.
    • 55. Trimpin, S., A. Rouhanipour, R. Az, H.J. Räder, and K. Müllen. 2001. New aspects in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a universal solvent-free sample preparation. Rapid Commun. Mass Spectrom. 15:1364–1373.
    • 56. Trimpin, S. and M.L Deinzer. 2005. Solvent-free MALDI-MS for the analysis of biological samples via a mini-ball mill approach. J. Am. Soc. Mass Spectrom. 16:542–547.
    • 57. Trimpin, S. and C.N. McEwen. 2007. A multi-sample on-target homogenization/transfer method for solvent-free MALDI-MS analysis of synthetic polymers. J. Am. Soc. Mass Spectrom. 18:377–381.
    • 58. Trimpin, S. and M.L Deinzer. 2007. Solvent-free MALDI-MS for the analysis of β-amyloid peptides via the mini-ball mill approach: qualitative and quantitative improvements. J. Am. Soc. Mass Spectrom. 18:1533–1543.
    • 59. Trimpin, S. and M.L Deinzer. 2007. Solvent-free MALDI-MS for the analysis of a membrane protein via the mini-ball mill approach: a case study of bacteriorhodopsin. Anal. Chem. 79:71–78.
    • 60. Trimpin, S., D.E. Clemmer, and C.N. McEwen. 2007. Charge-remote fragmentation of lithiated fatty acids on a TOF-TOF instrument using matrix-ionization. J. Am. Soc. Mass Spectrom. 18:1967–1972.
    • 61. Liu, X., S.J. Valentine, M.D. Plasencia, S. Trimpin, S. Naylor, and D.E. Clemmer. 2007. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18:1249–1264.
    • 62. Trimpin, S. and D.E. Clemmer. 2008. Ion mobility spectrometry/mass spectrometry/mass spectrometry for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80:9073–9083.
    • 63. Plasencia, M.D., D. Isailovic, S.I. Merenbloom, Y. Mechref, and D.E. Clemmer. 2008. Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19:1706–1715.
    • 64. Trimpin, S., B. Tan, B.C. Bohrer, D.K. O'Dell, S.I. Merenbloom, M.X. Pazos, D.E. Clemmer, and J.M. Walker. 2009. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry. Int. J. Mass Spectrom.(In press.).
    • 65. Bouschen, W. and B. Spengler. 2007. Artifacts of MALDI sample preparation investigated by high-resolution scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) imaging mass spectrometry. Int. J. Mass Spectrom. 266:129–137.
    • 66. Timms, J.F. and R. Cramer. 2008. Difference gel electrophoresis. Proteomics 8:4886–4897.
    • 67. Soltzberg, L.J., J.D. Slinker, S. Flores-Torres, D.A. Bernards, G.G. Malliaras, H.D. Abruña, J.S. Kim, R.H. Friend, et al.. 2006. Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices. J. Am. Chem. Soc. 128:7761–7764.
    • 68. Eelman, M.D., J.M. Blacquiere, M.M. Moriarty, and D.E. Fogg. 2008. Shining new light on an old problem: retooling MALDI mass spectrometry for organotransition-metal catalysis. Angew. Chem. Int. Ed. Engl. 47:303–306.
    • 69. Hankin, J.A., R.M. Barkley, and R.C. Murphy. 2007. Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18:1646–1652.
    • 70. Puolitaival, S.M., K.E. Burnum, D.S. Cornett, and R.M. Caprioli. 2008. Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J. Am. Soc. Mass Spectrom. 19:882–886.
    • 71. Hanton, S.D., T.M. McEvoy, and J.R. Stets. 2008. Imaging the morphology of solvent-free prepared MALDI samples. J. Am. Soc. Mass Spectrom. 19:874–881.
    • 72. Soltzberg, LJ, E. Hendrickson, A. McLaughlin, S. Newsky, C. Saikin, and M. Trieu. 2009. Metal contamination in matrix-assisted laser desorption/ionization samples prepared with the ‘vortex' solvent-free method. Rapid Commun. Mass Spectrom. 23:462–464.
    • 73. Trimpin, S., H.J. Räder, and K. Müllen. 2006. Experiments on theoretical principles of matrix-assisted laser desorption/ionization mass spectrometry part I preorganization. Int. J. Mass Spectrom. 253:13–21.
    • 74. Trimpin, S., S. Keune, H.J. Räder, and K. Müllen. 2006. Solvent-free MALDI-MS: developmental improvements in the reliability and the potential of MALDI analysis of synthetic polymers and giant organic molecules. J. Am. Soc. Mass Spectrom. 17:661–671.
    • 75. Speicher, K. D., O. Kolbas, S. Harper, and D. W. Speicher. 2000. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J. Biomol. Tech. 11:74–86.
    • 76. Stewart, I.I., T. Thomson, and D. Figeys. 2001. 18O labeling: a tool for proteomics. Rapid Commun. Mass Spectrom. 15:2456–2465.
    • 77. Nordhoff, E., H. Lehrach, and J. Gobom. 2007. Exploring the limits and losses in MALDI sample prperation of attomole amounts of peptides. Int. J. Mass Spectrom. 268:139–146.
    • 78. Wunderlin, M., M. Schuhmacher, S. Trimpin, S. Bühler, A. Török, K. Soos, B. Penke, and M. Przybylski. 1999. Isolation and structural characterization of the amyloid precursor protein (APP) from human brain. Peptides-European Symposium 25:330–331.
    • 79. Mattson, M.P. 2004. Pathways towards and away from Alzheimer's disease. Nature 430:631–639.
    • 80. Sayre, L.M., M.A. Smith, and G. Perry. 2001. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8:721–738.
    • 81. Bush, A.I., C.L. Masters, and R.E. Tanzi. 2003. Copper, beta-amyloid, and Alzheimer's disease: tapping a sensitive connection. Proc. Natl. Acad. Sci. USA 100:11193–11194.
    • 82. Schoneich, C. and T.D. Williams. 2002. Cu(II)-catalyzed oxidation of β-amyloid peptide targets His13 and His14 over His6: detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15:717–722.
    • 83. Schoneich, C. 2002. Redox processes of methionine relevant to beta-amyloid oxidation and Alzheimer's disease. Arch. Biochem. Biophys. 397:370–376.
    • 84. Deng, Y., B. Li, F. Liu, K. Iqbal, I. Grundke-Iqbal, R. Brandt, and C.X. Gong. 2008. Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. FASEB J. 22:138–145.
    • 85. Cohen, S.L. 2006. Ozone in ambient air as a source of adventitious oxidation: a mass spectrometric study. Anal. Chem. 78:4352–4362.
    • 86. Froelich, J.M. and G.E. Reid. 2008. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis. Proteomics 8:1334–1345.
    • 87. Trimpin, S. and C.N. McEwen. 2007. A multi-sample on-target homogenization/transfer method for solvent-free MALDI-MS analysis of synthetic polymers. J. Am. Soc. Mass Spectrom. 18:377–381.
    • 88. Trimpin, S., S.M. Weidner, J. Falkenhagen, and C.N. McEwen. 2007. Fractionation and solvent-free maldi-ms analysis of polymers using liquid adsorption chromatography at critical conditions in combination with a novel multi-sample on-target homogenization/transfer sample preparation method. Anal. Chem. 79:7565–7570.
    • 89. Trimpin, S., C.N. McEwen, H. Ji, and M.L. Deinzer. 2006. 144-sample on-target parallel homogenization/transfer method for solvent-free MALDI-MS analysis of peptides and proteins. Mol. Cell Proteomics 5:S300.
    • 90. Koeniger, S.L., S.I. Merenbloom, S.J. Valentine, M.F. Jarrold, H.R. Udseth, R.D. Smith, and D.E. Clemmer. 2006. An IMS-IMS analogue of MS-MS. Anal Chem. 78:4161–4174.
    • 91. Merenbloom, S.I., S.L. Koeniger, S.J. Valentine, M.D. Plasencia, and D.E. Clemmer. 2006. IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragmentions. Anal Chem. 78:2802–2809.
    • 92. Bohrer, B.C., S.I. Merenbloom, S.L. Koeniger, A.E. Hildebrand, and D.E. Clemmer. 2008. Biomolecule analysis by ion mobility. Annu. Rev. Anal. Chem. 1:293–327.
    • 93. Kanu, A.B., P. Dwivedi, M. Tam, L. Matz, and H.H. Hill, Jr. 2008. Ion mobility-mass spectrometry. J. Mass Spectrom. 43:1–22.
    • 94. Omenn, G.S., D.J. States, M. Adamski, T.W. Blackwell, R. Menon, H. Hermjakob, R. Apweiler, B.B. Haab, et al.. 2005. Overview of the HUPO plasma proteome project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5:3226–3245.
    • 95. Kurulugama, R.T., S.J. Valentine, R.A. Sowell, and D.E. Clemmer. 2008. Development of a high-throughput IMS-IMS-MS approach for analyzing mixtures of biomolecules. J. Proteomics 71:318–331.