We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Short Technical ReportsOpen Accesscc iconby icon

Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant

    Andrea K. Bartram

    Department of Biology, University of Waterloo, Waterloo, Ontario, Canada

    ,
    Calvin Poon

    Department of Biology, University of Waterloo, Waterloo, Ontario, Canada

    &
    Josh D. Neufeld

    *Address correspondence to Josh D. Neufeld, Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. email:

    E-mail Address: jneufeld@uwaterloo.ca

    Department of Biology, University of Waterloo, Waterloo, Ontario, Canada

    Published Online:https://doi.org/10.2144/000113276

    Molecular-grade glycogen is widely used to recover nanogram or picogram quantities of DNA and RNA across molecular biology applications in the life sciences. As a result, its purity is critical to obtain reliable results. Using agarose gel electrophoresis, we detected pg/µL (DNA) to ng/µL (RNA) concentrations of nucleic acid in two of the nine glycogen samples obtained from commercial suppliers. Denaturing gradient gel electrophoresis of 16S rRNA gene PCR-amplified products indicated that an additional two samples contained detectable contamination. We also tested a synthetic polymer co-precipitant, linear polyacrylamide (LPA); none of the four samples tested with LPA were detectably contaminated. The partial 16S rRNA gene sequence associated with the contaminated samples of the shellfish-derived glycogen was nearly identical to the sequence of Actinobacteria lwoffii, which has been isolated from mussels previously. By testing the recovery of low-nanogram amounts of DNA with multiple precipitants and simulated experimental conditions, we demonstrated that LPA was a preferable co-precipitant for sensitive protocols.

    References

    • 1. Velculescu, V.E., L. Zhang, B. Vogelstein, and K.W. Kinzler. 1995. Serial analysis of gene expression. Science 270:484–487.
    • 2. Chabardès-Garonne, D., A. Méjean, J.C. Aude, L. Cheval, A. Di Stefano, M.C. Gaillard, M. Imbert-Teboul, M. Wittner, et al.. 2003. A panoramic view of gene expression in the human kidney. Proc. Natl. Acad. Sci. USA 100:13710–13715.
    • 3. Shin, H., M. Hirst, M. Bainbridge, V. Magrini, E. Mardis, D. Moerman, M. Marra, D. Baillie, and S. Jones. 2008. Transcriptome analysis for Caenorhabditis elegans based on novel expressed sequence tags. BMC Biol. 6:30.
    • 4. Trogan, E., R.P. Choudhury, H.M. Dansky, J.X. Rong, J.L. Breslow, and E.A. Fisher. 2002. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA 99:2234–2239.
    • 5. Gendrel, A.-V., Z. Lippman, C. Yordan, V. Colot, and R.A. Martienssen. 2002. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873.
    • 6. Neil, H., C. Malabat, Y. d'Aubenton-Carafa, Z. Xu, L.M. Steinmetz, and A. Jacquier. 2009. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457:1038–1042.
    • 7. Russo, A.L., A. Thiagalingam, H. Pan, J. Califano, K.-h. Cheng, J.F. Ponte, D. Chinnappan, P. Nemani, et al.. 2005. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer. Clin. Cancer Res. 11:2466–2470.
    • 8. Zhu, G., L. Reynolds, T. Crnogorac-Jurcevic, C.E. Gillett, E.A. Dublin, J.F. Marshall, D. Barnes, C. D'Arrigo, et al.. 2003. Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer. Oncogene 22:3742–3748.
    • 9. Malnati, M.S., G. Scarlatti, F. Gatto, F. Salvatori, G. Cassina, T. Rutigliano, R. Volpi, and P. Lusso. 2008. A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat. Protoc. 3:1240–1248.
    • 10. Zoetendal, E.G., H.G.H.J. Heilig, E.S. Klaassens, C.C.G.M. Booijink, M. Kleer-ebezem, H. Smidt, and W.M. de Vos. 2006. Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat. Protoc. 1:870–873.
    • 11. Binga, E.K., R.S. Lasken, and J.D. Neufeld. 2008. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2:233–241.
    • 12. Whiteley, A.S., B. Thomson, T. Lueders, and M. Manefield. 2007. RNA stable-isotope probing. Nat. Protoc. 2:838–844.
    • 13. Neufeld, J.D., J. Vohra, M.G. Dumont, T. Lueders, M. Manefield, M.W. Friedrich, and J.C. Murrell. 2007. DNA stable-isotope probing. Nat. Protoc. 2:860–866.
    • 14. Gaillard, C. and F. Strauss. 1990. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 18:378.
    • 15. Zhang, Z., S. Schwartz, L. Wagner, and W. Miller. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7:203–214.
    • 16. Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, and D.L. Wheeler. 2000. Genbank. Nucleic Acids Res. 28:15–18.
    • 17. Zhang, Z., S. Schwartz, L. Wagner, and W. Miller. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7:203–214.
    • 18. Starliper, C.E., R.J. Neves, S. Hanlon, and P. Whittington. 2008. A survey of the indigenous microbiota (bacteria) in three species of mussels from the Clinch and Holston Rivers. Virginia. J. Shellfish Res. 27:1311–1317.