We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
ReportsOpen Accesscc iconby icon

Library construction for ancient genomics: Single strand or double strand?

    E. Andrew Bennett

    *Address correspondence to E. Andrew Bennett, Eva-Maria Geigl, or Thierry Grange, Institut Jacques Monod, Université Paris Diderot, Paris, France. E-mail:

    E-mail Address: bennett@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: geigl@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: grange@ijm.univ-paris-diderot.fr

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    ,
    Diyendo Massilani

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    ,
    Giulia Lizzo

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    ,
    Julien Daligault

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    ,
    Eva-Maria Geigl

    *Address correspondence to E. Andrew Bennett, Eva-Maria Geigl, or Thierry Grange, Institut Jacques Monod, Université Paris Diderot, Paris, France. E-mail:

    E-mail Address: bennett@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: geigl@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: grange@ijm.univ-paris-diderot.fr

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    &
    Thierry Grange

    *Address correspondence to E. Andrew Bennett, Eva-Maria Geigl, or Thierry Grange, Institut Jacques Monod, Université Paris Diderot, Paris, France. E-mail:

    E-mail Address: bennett@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: geigl@ijm.univ-paris-diderot.fr

    ,

    E-mail Address: grange@ijm.univ-paris-diderot.fr

    Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France

    Published Online:https://doi.org/10.2144/000114176

    A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform. Here we present in-depth comparisons of the different available library construction methods for DNA purified from 16 ancient and modern faunal and human remains, covering a range of different taphonomic and climatic conditions. We further present a DNA purification method for ancient samples that permits the concentration of a large volume of dissolved extract with minimal manipulation and methodological improvements to the single-stranded method to render it more economical and versatile, in particular to expand its use to both the Illumina and the Ion Torrent sequencing platforms. We show that the single-stranded library construction method improves the relative recovery of endogenous to exogenous DNA for most, but not all, of our ancient extracts.

    References

    • 1. Willerslev, E., J. Davison, M. Moora, M. Zobel, E. Coissac, M.E. Edwards, E.D. Lorenzen, M. Vestergard, et al.. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51.
    • 2. Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M. Schubert, E. Cappellini, et al.. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78.
    • 3. Bos, K. I., V.J. Schuenemann, G.B. Golding, H.A. Burbano, N. Waglechner, B.K. Coombes, J.B. McPhee, S.N. DeWitte, et al.. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–510.
    • 4. Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, J. Berka, M.S. Braverman, et al.. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.
    • 5. Blow, M.J., T. Zhang, T. Woyke, C.F. Speller, A. Krivoshapkin, D.Y. Yang, A. Derevianko, and E.M. Rubin. 2008. Identification of ancient remains through genomic sequencing. Genome Res. 18:1347–1353.
    • 6. Bentley, D.R., S. Balasubramanian, H.P. Swerdlow, G.P. Smith, J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, et al.. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.
    • 7. Meyer, M., M. Kircher, M.T. Gansauge, H. Li, F. Racimo, S. Mallick, J.G. Schraiber, F. Jay, et al.. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226.
    • 8. Prüfer, K., F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, A. Heinze, G. Renaud, et al.. 2014. The complete genome sequence of a Neander thal from the Altai Mountains. Nature 505:43–49.
    • 9. Dabney, J., M. Knapp, I. Glocke, M.T. Gansauge, A. Weihmann, B. Nickel, C. Valdiosera, N. Garcia, et al.. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110:15758–15763.
    • 10. Meyer, M., Q. Fu, A. Aximu-Petri, I. Glocke, B. Nickel, J.L. Arsuaga, I. Martinez, A. Gracia, et al.. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–406.
    • 11. Gansauge, M.T. and M. Meyer. 2013. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8:737–748.
    • 12. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715.
    • 13. Hofreiter, M., V. Jaenicke, D. Serre, A. von Haeseler, and S. Paabo. 2001. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29:4793–4799.
    • 14. Briggs, A.W., U. Stenzel, P.L. Johnson, R.E. Green, J. Kelso, K. Prufer, M. Meyer, J. Krause, et al.. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. USA 104:14616–14621.
    • 15. Heyn, P., U. Stenzel, A.W. Briggs, M. Kircher, M. Hofreiter, and M. Meyer. 2010. Road blocks on paleogenomes--polymerase extension profiling reveals the frequency of blocking lesions in ancient DNA. Nucleic Acids Res. 38:e161.
    • 16. Prevorovský, M. and F. Puta. 2003. A/T-rich inver ted DNA repeats are destabilized by chaotrope-containing buffer during purification using silica gel membrane technology. Biotechniques 35:698–702.
    • 17. Charruau, P., C. Fernandes, P. Orozco- Terwengel, J. Peters, L. Hunter, H. Ziaie, A. Jourabchian, H. Jowkar, et al.. 2011. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates. Mol. Ecol. 20:706–724.
    • 18. Champlot, S., C. Berthelot, M. Pruvost, E.A. Bennett, T. Grange, and E.M. Geigl. 2010. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE 5:e13042.
    • 19. Sawyer, S., J. Krause, K. Guschanski, V. Savolainen, and S. Paabo. 2012. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7:e34131.
    • 20. Li, T.W. and K.M. Weeks. 2006. Structure-independent and quantitative ligation of single-stranded DNA. Anal. Biochem. 349:242–246.
    • 21. Loman, N.J., R.V. Misra, T.J. Dallman, C. Constantinidou, S.E. Gharbia, J. Wain, and M.J. Pallen. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30:434–439.