We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
ReportsOpen Accesscc iconby icon

PCR amplification of GC-rich DNA regions using the nucleotide analog N4-methyl-2′-deoxycytidine 5′-triphosphate

    Cyntia R. Flores-Juárez

    CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro 76090 Mexico

    ,
    Eva González-Jasso

    CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro 76090 Mexico

    ,
    Anaid Antaramian

    Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 Mexico

    &
    Reynaldo C. Pless

    *Address correspondence to Reynaldo C. Pless, CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, Mexico. E-mail:

    E-mail Address: rcpless@yahoo.com

    CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro 76090 Mexico

    Published Online:https://doi.org/10.2144/000114457

    GC-rich DNA regions were PCR-amplified with Taq DNA polymerase using either the canonical set of deoxynucleoside triphosphates or mixtures in which the dCTP had been partially or completely replaced by its N4-methylated analog, N4-methyl-2′-deoxycytidine 5′-triphosphate (N4me-dCTP). In the case of a particularly GC-rich region (78.9% GC), the PCR mixtures containing N4me-dCTP produced the expected amplicon in high yield, while mixtures containing the canonical set of nucleotides produced numerous alternative amplicons. For another GC-rich DNA region (80.6% GC), the target amplicon was only generated by re-amplifying a gel-purified sample of the original amplicon with N4me-dCTP—containing PCR mixtures. In a direct PCR comparison on a highly GC-rich template, mixtures containing N4me-dCTP clearly performed better than did solutions containing the canonical set of nucleotides mixed with various organic additives (DMSO, betaine, or ethylene glycol) that have been reported to resolve or alleviate problems caused by secondary structures in the DNA. This nucleotide analog was also tested in PCR amplification of DNA regions with intermediate GC content, producing the expected amplicon in each case with a melting temperature (Tm) clearly below the Tm of the same amplicon synthesized exclusively with the canonical bases.

    References

    • 1. Jung, A., S. Ruckert, P. Frank, T. Brabletz, and T. Kirchner. 2002. 7-Deaz′′a-2′- deoxyguanosine allows PCR and sequencing reactions from CpG islands. Mol. Pathol. 55:55–57.
    • 2. Mamedov, T.G., E. Pienaar, J.R. TerMaat, G. Carvill, R. Goliath, A. Subramanian, and H. Viljoen. 2008. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem. 32:452–457.
    • 3. Dierick, H., M. Stul, W. Kelver, P. Marynen, and J.J. Cassiman. 1993. Incorporation of dITP or 7-deaza dGTP during PCR improves sequencing of the product. Nucleic Acids Res. 21:4427–4428.
    • 4. Henke, W., K. Herdel, K. Jung, D. Schnorr, and S.A. Loening. 1997. Betaine improves the PCR amplif ication of GC rich DNA sequences. Nucleic Acids Res. 25:3957–3958.
    • 5. Hubé, F., P. Reverdiau, S. Iochmann, and Y. Gruel. 2005. Improved PCR Method for Amplification of GC-Rich DNA Sequences. Mol. Biotechnol 31:81–84.
    • 6. Musso, M., R. Bocciardi, S. Parodi, R. Ravazzolo, and I. Ceccherini. 2006. Betaine, Dimethyl Sulfoxide, and 7-Deaza-dGTP, a Powerful Mixture for Amplification of GC-rich DNA Sequences. J. Mol. Diagn. 8:544–550.
    • 7. Wei, M., J. Deng, K. Feng, B. Yu, and Y. Chen. 2010. Universal Method Facilitating the Amplification of Extremely GC-Rich DNA Fragments from Genomic DNA. Anal. Chem. 82:6303–6307.
    • 8. Orpana, A.K., T.H. Ho, and J. Stenman. 2012. Multiple heat pulses during PCR extension enabling amplification of GC-rich sequences and reducing amplification bias. Anal. Chem. 84:2081–2087.
    • 9. Frey, U.H., H. Bachmann, J. Peters, and W. Siffert. 2008. PCR amplification of GC regions: slowdown PCR. Nat. Protoc. 3:1312–1317.
    • 10. Sarkar, G., S. Kapelner, and S. Sommer. 1990. Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18:7465.
    • 11. Rees, W.A., T.D. Yager, J. Korte, and P.H. von Hippel. 1993. Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32:137–144.
    • 12. Nguyen, H.K., O. Fournier, U. Asseline, D. Dupret, and N.T. Thuong. 1999. Smoothing of the thermal stability of DNA duplexes by using modified nucleosides and chaotropic agents. Nucleic Acids Res. 27:1492–1498.
    • 13. Zhang, Z., X. Yang, L. Meng, F. Liu, C. Shen, and W. Yang. 2009. Enhanced amplification of GC-rich DNA with two organic reagents. Biotechniques 47:775–779.
    • 14. Chevet, E., G. Lemaitre, and M.D. Katinka. 1995. Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Res. 23:3343–3344.
    • 15. Baskaran, N., R. Kandpal, A. Bhargava, M. Glynn, A. Bale, and S. Weissman. 1996. Uniform Amplification of a Mixture of Deoxyribonucleic Acids with Varying GC Content. Genome Res. 6:633–638.
    • 16. Li, S., A. Haces, L. Stupar, G. Gebeyehu, and R.C. Pless. 1993. Elimination of band compression in sequencing gels by the use of N4-methyl-2′-deoxycytidine 5′-triphosphate. Nucleic Acids Res. 21:2709–2714.
    • 17. Nguyen, H.K., P. Auffrey, U. Asseline, D. Dupret, and N.T. Thuong. 1997. Modification of DNA duplexes to smooth their thermal stability independent of their base content for DNA sequncing by hybridization. Smoothing of the thermal stability of DNA duplexes by using modified nucleosides and chaotropic agents. Nucleic Acids Res. 25:3059–3065.
    • 18. Cervi, A.R., A. Guy, G.A. Leonard, R. Téoule, and W.N. Hunter. 1993. The crystal structure of N4-methylcytosine.guanosine base-pairs in the synthetic hexanucleotide d(CGCGm4CG. Nucleic Acids Res. 21:5623–5629.
    • 19. Flores-Juárez, C.R., E. González-Jasso, A. Antaramian, and R.C. Pless. 2013. Capacity of N4-methyl-2′-deoxycytidine 5′-triphosphate to sustain the polymerase chain reaction using different thermostable DNA polymerases. Anal. Biochem. 438:73–81.
    • 20. Flores-Juárez, C.R., V. Leberre Anton, E. Trévisiol, A. Antaramian, E. González-Jasso, and R.C. Pless. 2014. Hybridisation of N4-methylcytosine-containing amplicons on DNA microarrays. J. Biotechnol. 189:143–149.
    • 21. Kang, J., M.S. Lee, and D.G. Gorenstein. 2005. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. J. Biochem. Biophys. Methods 64:147–151.
    • 22. Pratyush, D.D., S. Tiwari, A. Kumar, and S.K. Singh. 2012. A new approach to touchdown method using betaine as co-solvent for increased specificity and intensity of GC rich gene amplification. Gene 497:269–272.
    • 23. Simonovic, A., M. Trifunovic, M. Raspor, A. Cingel, M. Bogdanovic, M. Dragicevic, and A. Subotic. 2012. Dimethyl sulfoxide improves sensitivity and specificity of RT-PCR and qRT-PCR amplification of low-expressed transgenes. Arch Biol Sci. 64:865–876.
    • 24. Ono, A. and T. Ueda. 1987. Synthesis of decadeoxyribonucleotides containing N6-methyladenine, N4-methylcytosine, and 5-methylcytosine: recognition and cleavage by restriction endonucleases (nucleosides and nucleotides part 74). Nucleic Acids Res. 15:219–232.
    • 25. McClelland, M., M. Nelson, and E. Raschke. 1994. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 22:3640–3659.
    • 26. Janulaitis, A.A., M.P. Petrušyte, B.P. Jaskeleviciene, A.S. Krayev, K.S. Skryabin, and A.A. Bayev. 1981. A new restriction endonuclease, BcnI, from Bacillus centroporus RFL 1. Dokl. Akad. Nauk SSSR 257:749–750.
    • 27. Petrušyte, M.P. and A.A. Janulaitis. 1981. Specific methylase from Bacillus centrosporus. Bioorg. Khim 7:1885–1887.
    • 28. Ehrlich, M., M.A. Gama-Sosa, L.H. Carreira, L.G. Ljungdahl, K.C. Kuo, and C.W. Gehrke. 1985. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 13:1399–1412.
    • 29. Butkus, V., S. Klimašauskas, D. Keršulyte, D. Vaitkevicius, A. Lebionka, and A. Janulaitis. 1985. Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of the substrate. Nucleic Acids Res. 13:5727–5746.
    • 30. Ehrlich, M., G.G. Wilson, K.C. Kuo, and C.W. Gehrke. 1987. N4-methylcytosine as a minor base in bacterial DNA. J. Bacteriol 169:939–943.