We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.2144/btn-2018-0058

Digital PCR has been promoted as a technique for obtaining absolute measures of the amount of nucleic acid target sequence in a sample, but still lacks standardization in data reporting. The initial method of representing data as copies per microliter produced inconsistent results and made inter-assay comparisons difficult. Normalizing copies to amount of nucleic acid gives more uniform results, but factors influencing the effective concentration of nucleic acid in the final digital PCR assay must be considered. Using droplet digital PCR and previously validated reference genes duplexed with target genes, a method of normalization was developed to estimate the amount of input nucleic acid in individual assays, subsequently reporting the number of copies of target gene relative to this amount. Correcting for the actual amount of amplifiable nucleic acid present demonstrated a higher correlation between various dilutions of sample mRNA and allowed more accurate comparisons of digital PCR results.

References

  • 1 Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83(22), 8604–8610 (2011).
  • 2 Miotke L, Lau BT, Rumma RT, Ji HP. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal. Chem. 86(5), 2618–2624 (2014).
  • 3 Bhat S, Herrmann J, Armishaw P, Corbisier P, Emslie KR. Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal. Bioanal. Chem. 394(2), 457–467 (2009).
  • 4 Whale AS, Huggett JF, Cowen S et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res. 40(11), e82 (2012).
  • 5 Laurie MT, Bertout JA, Taylor SD, Burton JN, Shendure JA, Bielas JH. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries. Biotechniques 55(2), 61–67 (2013).
  • 6 Pinheiro LB, Coleman VA, Hindson CM et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84(2), 1003–1011 (2012).
  • 7 Vossen RH, White SJ. Quantitative DNA analysis using droplet digital PCR. Methods Mol. Biol. 1492, 167–177 (2017).
  • 8 Cao Y, Raith MR, Griffith JF. Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Res. 70, 337–349 (2015).
  • 9 Huggett JF, Novak T, Garson JA et al. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res. Notes 1, 70 (2008).
  • 10 Jennings Lj GD, Czech J, Yu M, Joseph L. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J. Mol. Diag. 16(2), 174–179 (2014).
  • 11 Basu AS. Digital assays part I: partitioning statistics and digital PCR. SLAS Technol. 22(4), 369–386 (2017).
  • 12 Witte AK, Mester P, Fister S, Witte M, Schoder D, Rossmanith P. A systematic investigation of parameters influencing droplet rain in the Listeria monocytogenes prfA assay – reduction of ambiguous results in ddPCR. PLoS One 11(12), e0168179 (2016).
  • 13 Jones M, Williams J, Gartner K, Phillips R, Hurst J, Frater J. Low copy target detection by droplet digital PCR through application of a novel open access bioinformatic pipeline, ‘definetherain’. J. Virol. Methods 202, 46–53 (2014).
  • 14 Attali D, Bidshahri R, Haynes C, Bryan J. ddpcr: an R package and web application for analysis of droplet digital PCR data. F1000Res 5, 1411 (2016).
  • 15 Koppel R, Bucher T. Rapid establishment of droplet digital PCR for quantitative GMO analysis. Eur. Food Res. Technol. 241, 427–439 (2015).
  • 16 Lievens A, Jacchia S, Kagkli D, Savini C, Querci M. Measuring digital PCR quality: performance parameters and their optimization. PLoS One 11(5), e0153317 (2016).
  • 17 Jacobs BK, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinformatics 15, 283 (2014).
  • 18 Dreo T, Pirc M, Ramsak Z et al. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal. Bioanal. Chem. 406(26), 6513–6528 (2014).
  • 19 Jacobs BKM, Goetghebeur E, Vandesompele J et al. Model-based classification for digital PCR: your umbrella for rain. Anal. Chem. 89(8), 4461–4467 (2017).
  • 20 Trypsteen W, Vynck M, De Neve J et al. ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Anal. Bioanal. Chem. 407(19), 5827–5834 (2015).
  • 21 Chiu A, Ayub M, Dive C, Brady G, Miller CJ. twoddpcr: an R/Bioconductor package and Shiny app for droplet digital PCR analysis. Bioinformatics 33(17), 2743–2745 (2017).
  • 22 Brink BG, Meskas J, Brinkman RR. ddPCRclust: an R package and Shiny app for automated analysis of multiplexed ddPCR data. Bioinformatics doi:10.1093/bioinformatics/bty136 (2018).
  • 23 Dobnik D, Stebih D, Blejec A, Morisset D, Zel J. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Sci. Rep. 6, 35451 (2016).
  • 24 Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50(3), 509–515 (2004).
  • 25 Sanders R, Mason DJ, Foy CA, Huggett JF. Evaluation of digital PCR for absolute RNA quantification. PLoS One 8(9), e75296 (2013).
  • 26 Suslov O, Steindler DA. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 33(20), e181 (2005).
  • 27 Taylor SC, Laperriere G, Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci. Rep. 7(1), 2409 (2017).
  • 28 Albano F, Zagaria A, Anelli L et al. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia. Oncotarget 6(15), 13269–13277 (2015).
  • 29 Kuramitsu M, Okuma K, Yamagishi M et al. Identification of TL-Om1, an adult T-cell leukemia (ATL) cell line, as reference material for quantitative PCR for human T-lymphotropic virus 1. J. Clin. Microbiol. 53(2), 587–596 (2015).
  • 30 Podlesniy P, Trullas R. Absolute measurement of gene transcripts with Selfie-digital PCR. Sci. Rep. 7(1), 8328 (2017).
  • 31 Sanders JM, Coulter SJ, Knudsen GA, Dunnick JK, Kissling GE, Birnbaum LS. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A. Toxicol. Appl. Pharmacol. 298, 31–39 (2016).
  • 32 Bustin SA, Beaulieu JF, Huggett J et al. MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC molecular biology 11, 74 (2010).
  • 33 Whale AS, Huggett JF, Tzonev S. Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 10, 15–23 (2016).
  • 34 Mcdermott GP, Do D, Litterst CM et al. Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. Anal. Chem. 85(23), 11619–11627 (2013).