We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
ReviewOpen Accesscc iconby iconnc iconnd icon

qPCR-based methods for expression analysis of miRNAs

    Diego A Forero

    *Author for correspondence:

    E-mail Address: diego.forero@uan.edu.co

    Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia

    PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia

    ,
    Yeimy González-Giraldo

    Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia

    ,
    Luis J Castro-Vega

    INSERM, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France

    Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

    &
    George E Barreto

    Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia

    Published Online:https://doi.org/10.2144/btn-2019-0065

    Several approaches for miRNA expression analysis have been developed in recent years. In this article, we provide an updated and comprehensive review of available qPCR-based methods for miRNA expression analysis and discuss their advantages and disadvantages. Existing techniques involve the use of stem–loop reverse transcriptase–PCR, polyadenylation of RNAs, ligation of adapters or RT with complex primers, using universal or miRNA-specific qPCR primers and/or probes. Many of these methods are oriented towards the expression analysis of mature miRNAs and few are designed for the study of pre-miRNAs and pri-miRNAs. We also discuss findings from articles that compare results from existing methods. Finally, we suggest key points for the improvement of available techniques and for the future development of additional methods.

    References

    • 1. Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J. Translat. Med. 14(1), 143 (2016).
    • 2. Paul P, Chakraborty A, Sarkar D et al. Interplay between miRNAs and human diseases. J. Cell. Physiol. 233(3), 2007–2018 (2018).
    • 3. Zhang Y, Yun Z, Gong L et al. Comparison of miRNA evolution and function in plants and animals. MicroRNA 7(1), 4–10 (2018).
    • 4. Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation. Front. Plant Sci. 10, 360 (2019).
    • 5. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucl. Acids Res. 47(D1), D155–D162 (2018).
    • 6. Kong W, Zhao JJ, He L, Cheng JQ. Strategies for profiling microRNA expression. J. Cell. Physiol. 218(1), 22–25 (2009).
    • 7. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13(5), 358–369 (2012).
    • 8. Jacobsen N, Andreasen D, Mouritzen P. Profiling microRNAs by real-time PCR. Method. Mol. Biol. 732, 39–54 (2011).
    • 9. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 22(2), 338–342 (2008).
    • 10. Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucl. Acids Res. 32(4), e43 (2004).
    • 11. Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucl. Acids Res. 33(20), e179 (2005).
    • 12. Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. BioTechniques 39(4), 519–525 (2005).
    • 13. Huang T, Yang J, Liu G et al. Quantification of mature microRNAs using pincer probes and real-time PCR amplification. PLoS One 10(3), e0120160 (2015).
    • 14. Lan L, Guo Q, Nie H et al. Linear-hairpin variable primer RT-qPCR for microRNA. Chem. Sci. 10(7), 2034–2043 (2019).
    • 15. Ponchel F, Toomes C, Bransfield K et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 3, 18 (2003).
    • 16. Wang Y, Zhou J, Chen Y et al. Quantification of distinct let-7 microRNA family members by a modified stem-loop RT-qPCR. Mol. Med. Report. 17(3), 3690–3696 (2018).
    • 17. Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem. Biophys. Res. Comm. 343(1), 85–89 (2006).
    • 18. Jung U, Jiang X, Kaufmann SH, Patzel V. A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA. RNA 19(12), 1864–1873 (2013).
    • 19. Tong L, Xue H, Xiong L, Xiao J, Zhou Y. Improved RT-PCR assay to quantitate the pri-, pre-, and mature microRNAs with higher efficiency and accuracy. Mol. Biotechnol. 57(10), 939–946 (2015).
    • 20. Ro S, Park C, Jin J, Sanders KM, Yan W. A PCR-based method for detection and quantification of small RNAs. Biochem. Biophys. Res. Comm. 351(3), 756–763 (2006).
    • 21. Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 11, 70 (2011).
    • 22. Kang K, Zhang X, Liu H et al. A novel real-time PCR assay of microRNAs using S-Poly(T), a specific oligo(dT) reverse transcription primer with excellent sensitivity and specificity. PLoS One 7(11), e48536 (2012).
    • 23. Benes V, Collier P, Kordes C et al. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci. Rep. 5, 11590 (2015).
    • 24. Kumar P, Johnston BH, Kazakov SA. miR-ID: a novel, circularization-based platform for detection of microRNAs. RNA 17(2), 365–380 (2011).
    • 25. Ge Q, Tian F, Zhou Y et al. A universal linker-RT PCR based quantitative method for the detection of circulating miRNAs. Analyt. Method. 6(22), 9101–9107 (2014).
    • 26. Honda S, Kirino Y. Dumbbell-PCR: a method to quantify specific small RNA variants with a single nucleotide resolution at terminal sequences. Nucl. Acids Res. 43(12), e77 (2015).
    • 27. Zheng W, Di Y, Liu Y et al. Development and application of a novel reverse transcription real-time PCR method for miR-499 quantification. Clin. Biochem. 46(15), 1566–1571 (2013).
    • 28. Li X, Ni M, Zhang C, Ma W, Zhang Y. A convenient system for highly specific and sensitive detection of miRNA expression. RNA 20(2), 252–259 (2014).
    • 29. Kim KJ, Kwak J, Lee JH, Lee SS. Real-time qRT-PCR assay for the detection of miRNAs using bi-directional extension sequences. Analyt. Biochem. 536, 32–35 (2017).
    • 30. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucl. Acids Res. 45(15), e144 (2017).
    • 31. Zhang W, Zhang J, Zhang Q, Hu F, Gu Y. Highly specific real-time quantification of diverse microRNAs in human samples using universal primer set frame. Analyt. Biochem. 543, 71–78 (2018).
    • 32. Leti F, Distefano JK. miRNA quantification method using quantitative polymerase chain reaction in conjunction with C q method. Method. Mol. Biol. 1706, 257–265 (2018).
    • 33. Chugh P, Tamburro K, Dittmer DP. Profiling of pre-micro RNAs and microRNAs using quantitative real-time PCR (qPCR) arrays. J. Vis. Exp. 46, pii: 2210 (2010).
    • 34. Zeka F, Mestdagh P, Vandesompele J. RT-qPCR-based quantification of small Non-Coding RNAs. Method. Mol. Biol. 1296, 85–102 (2015).
    • 35. Zollner H, Hahn SA, Maghnouj A. Quantitative RT-PCR specific for precursor and mature miRNAs. Method. Mol. Biol. 1095, 121–134 (2014).
    • 36. Kramer MF. Stem-loop RT-qPCR for miRNAs. Current Protocols in Molecular Biology (Chapter 15). Unit 15, 10 (2011).
    • 37. Salone V, Rederstorff M. Stem-loop RT-PCR based quantification of small Non-Coding RNAs. Method. Mol. Biol. 1296, 103–108 (2015).
    • 38. Guo L, Chen F. A challenge for miRNA: multiple isomiRs in miRNAomics. Gene 544(1), 1–7 (2014).
    • 39. Bofill-De Ros X, Yang A, Gu S. IsomiRs: expanding the miRNA repression toolbox beyond the seed. Biochim. Biophys. Acta Gene Regul. Mech. pii: S1874-9399(18)30539-X (2019).
    • 40. Juzenas S, Venkatesh G, Hubenthal M et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucl. Acids Res. 45(16), 9290–9301 (2017).
    • 41. Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucl. Acids Res. 45(6), 2973–2985 (2017).
    • 42. Nejad C, Pillman KA, Siddle KJ et al. miR-222 isoforms are differentially regulated by type-I interferon. RNA 24(3), 332–341 (2018).
    • 43. Yu F, Pillman KA, Neilsen CT et al. Naturally existing isoforms of miR-222 have distinct functions. Nucl. Acids Res. 45(19), 11371–11385 (2017).
    • 44. Cloonan N, Wani S, Xu Q et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 12(12), R126 (2011).
    • 45. Pillman KA, Goodall GJ, Bracken CP, Gantier MP. miRNA length variation during macrophage stimulation confounds the interpretation of results: implications for miRNA quantification by RT-qPCR. RNA 25(2), 232–238 (2019).
    • 46. Nejad C, Pepin G, Behlke MA, Gantier MP. Modified polyadenylation-based RT-qPCR increases selectivity of amplification of 3′-MicroRNA isoforms. Front. Genet. 9, 11 (2018).
    • 47. Magee R, Telonis AG, Cherlin T, Rigoutsos I, Londin E. Assessment of isomiR discrimination using commercial qPCR methods. Non-Coding RNA 3(2), (2017).
    • 48. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucl. Acids Res. 46(D1), D239–D245 (2018).
    • 49. Chou CH, Shrestha S, Yang CD et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucl. Acids Res. 46(D1), D296–D302 (2018).
    • 50. Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. Bioinformatics 33(10), 1554–1560 (2017).
    • 51. Casper J, Zweig AS, Villarreal C et al. The UCSC Genome Browser database: 2018 update. Nucl. Acids Res. 46(D1), D762–D769 (2018).
    • 52. Zerbino DR, Achuthan P, Akanni W et al. Ensembl 2018. Nucl. Acids Res. 46(D1), D754–D761 (2018).
    • 53. Untergasser A, Cutcutache I, Koressaar T et al. Primer3: new capabilities and interfaces. Nucl. Acids Res. 40(15), e115 (2012).
    • 54. You FM, Huo N, Gu YQ et al. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformat. 9, 253 (2008).
    • 55. Busk PK. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformat. 15, 29 (2014).
    • 56. Lefever S, Vandesompele J, Speleman F, Pattyn F. RTPrimerDB: the portal for real-time PCR primers and probes. Nucl. Acids Res. 37(Database issue), D942–D945 (2009).
    • 57. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31(13), 3406–3415 (2003).
    • 58. Ouyang T, Liu Z, Han Z, Ge Q. MicroRNA detection specificity: recent advances and future perspective. Analyt. Chem. 91(5), 3179–3186 (2019).
    • 59. Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 26(2), 70–76 (2008).
    • 60. Hunt EA, Broyles D, Head T, Deo SK. MicroRNA detection: current technology and research strategies. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 8, 217–237 (2015).
    • 61. Liu CG, Calin GA, Meloon B et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 101(26), 9740–9744 (2004).
    • 62. Liu CG, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat. Protocol. 3(4), 563–578 (2008).
    • 63. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat. Method. 1(1), 47–53 (2004).
    • 64. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Method. 1(2), 155–161 (2004).
    • 65. Neely LA, Patel S, Garver J et al. A single-molecule method for the quantitation of microRNA gene expression. Nat. Method. 3(1), 41–46 (2006).
    • 66. Hsieh CH, Chen WM, Hsieh YS et al. A novel multi-gene detection platform for the analysis of miRNA expression. Sci. Rep. 8(1), 10684 (2018).
    • 67. Morin RD, O'connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18(4), 610–621 (2008).
    • 68. Git A, Dvinge H, Salmon-Divon M et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5), 991–1006 (2010).
    • 69. Tam S, De Borja R, Tsao MS, Mcpherson JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab. Invest. 94(3), 350–358 (2014).
    • 70. Chen Y, Gelfond JA, Mcmanus LM, Shireman PK. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10, 407 (2009).
    • 71. Pradervand S, Weber J, Lemoine F et al. Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. BioTechniques 48(3), 219–222 (2010).
    • 72. Jensen SG, Lamy P, Rasmussen MH et al. Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12, 435 (2011).
    • 73. Redshaw N, Wilkes T, Whale A, Cowen S, Huggett J, Foy CA. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques 54(3), 155–164 (2013).
    • 74. Mou G, Wang K, Xu D, Zhou G. Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNAs. Biosci. Biotechnol. Biochem. 77(6), 1349–1353 (2013).
    • 75. Mestdagh P, Hartmann N, Baeriswyl L et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Method. 11(8), 809–815 (2014).
    • 76. Hindson CM, Chevillet JR, Briggs HA et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Method. 10(10), 1003–1005 (2013).
    • 77. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61(1), 79–88 (2015).
    • 78. Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14(5), 844–852 (2008).
    • 79. Kulcheski FR, Marcelino-Guimaraes FC, Nepomuceno AL, Abdelnoor RV, Margis R. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean. Analyt. Biochem. 406(2), 185–192 (2010).
    • 80. Fausto AKS, Silva TDF, Romanel E, Vaslin MFS. microRNAs as reference genes for quantitative PCR in cotton. PLoS One 12(4), e0174722 (2017).
    • 81. Wylie D, Shelton J, Choudhary A, Adai AT. A novel mean-centering method for normalizing microRNA expression from high-throughput RT-qPCR data. BMC Res. Notes 4, 555 (2011).
    • 82. Mohammadian A, Mowla SJ, Elahi E, Tavallaei M, Nourani MR, Liang Y. Normalization of miRNA qPCR high-throughput data: a comparison of methods. Biotechnol. Lett. 35(6), 843–851 (2013).
    • 83. Qureshi R, Sacan A. A novel method for the normalization of microRNA RT-PCR data. BMC Med. Genom. 6(Suppl. 1), S14 (2013).
    • 84. Mestdagh P, Van Vlierberghe P, De Weer A et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 10(6), R64 (2009).
    • 85. Schwarzenbach H, Da Silva AM, Calin G, Pantel K. Data normalization strategies for MicroRNA quantification. Clin. Chem. 61(11), 1333–1342 (2015).
    • 86. Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), RESEARCH0034 (2002).
    • 87. Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622 (2009).
    • 88. Bustin S, Dhillon HS, Kirvell S et al. Variability of the reverse transcription step: practical implications. Clin. Chem. 61(1), 202–212 (2015).
    • 89. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucl. Acids Res. 37(3), e21 (2009).