We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.2144/btn-2023-0057

Standfirst

With an ever-growing global population, the pursuit of sustainable agriculture has become paramount. What if the solution lies right beneath our feet? Enter the root microbiome, the hidden hero poised to revolutionize agriculture and bring us closer to a greener future.

References

  • 1. Singh B, Trivedi P, Egidi E, Macdonald C, Delgado-Baquerizo M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 18, 601–602 (2020).
  • 2. Reaping economic and environmental benefits from sustainable land management. ELD Initiative Bonn, Germany (2015). https://www.eld-initiative.org/fileadmin/pdf/ELD-pm-report_05_web_300dpi.pdf
  • 3. Bai B, Liu W, Qiu X, Zhang J, Bai Y. The root microbiome: community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 64(2), 230–243 (2022).
  • 4. Rana A, Saharan B, Nain L, Prasanna R, Shivay Y. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci, Plant Nutr. 58(5), 573–582 (2012).
  • 5. Zhang J, Ahmed W, Dai Z et al. Microbial consortia: An engineering tool to suppress clubroot of Chinese cabbage by changing the rhizosphere bacterial community composition. Biology (Basel). 11(6), 918 (2022).
  • 6. Singh B, Bardgette R, Smooth P, Reay D. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).
  • 7. Jan S, Singh R, Bhardwaj R, Ahmad P, Kapoor D. Plant growth regulators; a sustainable approach to combat pesticide toxicity. 3 Biotech. 10(11), 466 (2020).
  • 8. Wu P, Ma L, Hou X. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132(3), 1260–1271 (2003).
  • 9. Plaxton WC, Tran HT. Metablic adaptations of phosphate-starved plants. Plant Physiol. 156(3), 1006–1015 (2011).
  • 10. Chan C, Liao YY, Chiou TJ. The impact of phosphorus on plant immunity. Plant Cell Physiol. 24(62), 582–589 (2021).
  • 11. Hannula SE, Ma H, Pérez-Jaramillo JE, Pineda A, Bezemer TM. Structure and ecological function of the soil microbiome affective plant-soil feedbacks in the presence of soil-borne pathogen. Environ. Microbiol. 22(2), 660–676 (2020).
  • 12. Finkel OM, Salas-González I, Castrillo G et al. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLOS Biol. 17(11), e3000534 (2019).
  • 13. Tiwari M, Pati D, Mohapatra R, Sahu BB, Singh P. The impact of microbes in plant immunity and priming induced inheritance: a sustainable approach for crop protection. Plant Stress 4, 100072 (2022).
  • 14. Zhour JM, Zhang Y. Plant immunity: danger perception and signaling. Cell 181(5), 978–989 (2020).
  • 15. Rahman NSNA, Hamid NWA, Nadarajah K. Effects of abiotic stress on soil microbiome. Int. J. Mol. Sci. 22(16), 93036 (2021).
  • 16. Xu L, Colemann-Derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).
  • 17. Liu H, Brettell L, Qiu Z, Singh B. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 25(8), 733–743 (2020).
  • 18. Hartman K, Tringe S. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 476(19), 2705–2724 (2019).
  • 19. Santos-Medellín C, Liechty Z, Edwards J et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nat Plants. 7(8), 1065–1077 (2021).
  • 20. Huang G, Jin Q, Peng H, Zhu T, Ye H. Effect of a fungus, Hypoxylon spp., on endophytes in the roots of asparagus. FES Microbiol. Lett. 366(16), fnz207 (2019).
  • 21. Harbort C, Hashimoto M, Inoue H et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microb. 28(6), 825–837 (2020).
  • 22. Zhang J, Liu YX, Zhang N et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotech. 37, 676–684 (2019).
  • 23. Teixeira PJPL, Colaianni NR, Law TF, Dangl J. Specific modulation of the root immune system by a community of commensal bacteria. Proc. Natl. Acad. Sci. 118(16), e2100678118 (2021).
  • 24. McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375(1808), 20190592 (2020).
  • 25. Ravanbakhsh M, Kowalchuk GA, Jousset A. Targeted plant hologenome editing for plant trait enhancement. New Phytol. 229(2), 1067–1077 (2021).
  • 26. Ravanbakhsh M, Kowalchuk GA, Jousset A. Root-associated microorganisms reprogram plant life history along the growth-stress resistance tradeoff. ISME J. 13, 3093–3101 (2019).
  • 27. Wagner M, Lundberg DS, Coleman-Derr D, Tringe SG, Dangi JL, Mitchell-Olds T. Natural soil microbes later flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 17(6), 717–726 (2014).
  • 28. Romano I, Ventorino V, Pepe O. Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front. Plant. Sci. 11, 6 (2020).
  • 29. Shayanthan A, Ordoñez PAC, Oresnik IJ. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front. Agron. 4, 896307 (2022).
  • 30. Chai YN, Ge Y, Stoerger V, Schachtman DP. High-resolution phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and synthetic microbial communities. Plant Cell Environ. 44(5), 1611–1626 (2021).
  • 31. Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J. 15, 330–347 (2021).
  • 32. Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. 112(36), E5013–E5020 (2015).
  • 33. Wang C, Li Y, Li M et al. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean. J. Integr. Plant Biol. 63(6), 1021–1035 (2021).
  • 34. Nwachukwu BC, Babalola OO. Metagenomics: a tool for exploring key microbiome with the potentials for improving sustainable agriculture. Front. Sustain. Food Syst. 6, 886987 (2022).
  • 35. Enespa, Chandra P. Tool and techniques study to plant microbiome current understanding and future needs: an overview. Commun. Integr. Biol. 15(1), 209–225 (2022).
  • 36. Hao DC, Gu XJ, Xiao PG. Chemical and biological research of Clematis medicinal resources. In: Medicinal Plants. Hao DCGu XJXiao PG (Eds). Woodhead Publishing, Cambridge, UK, 341–371 (2015).
  • 37. Igiehon NO, Babalola OO, Aremu BR. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 19, 159 (2019).
  • 38. Babalola OO, Alawiye TT, Lopez CR, Ayangbenro AS. Shotgun metagenomic sequencing data of sunflower rhizosphere microbial community in South Africa. Data Br. 31, 105831 (2020).
  • 39. Wang C, Zhou X, Guo D et al. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann. Microbiol. 69, 1461–1473 (2019).
  • 40. Oulas A, Pavloudi C, Polymenakou P et al. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform. Biol. Insights 9, 75–88 (2015).
  • 41. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Gen. 17, 333–351 (2016).
  • 42. Kerkhof LJ, Dillon KP, Häggblom MM, McGuinness LR. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116 (2017).
  • 43. Johnson JS, Spakowicz DJ, Hong BY et al. Evluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 6(10), 5029 (2019).
  • 44. Winand R, Bogaerts B, Hoffman S et al. Targeting the 16S rRNA gene for bacterial identification in complex mixed samples; comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies. Int. J. Mol. Sci. 21(1), 298 (2020).
  • 45. Jouffret V, Miotello G, Culotta K, Ayrault S, Pible O, Armengaud J. Increasing the power of interpretation for soil metaproteomics data. Microbiome 9, 195 (2021).
  • 46. Keiblinger KM, Wilhartitz IC, Schneider T et al. Soil metaproteomics – comparative evaluation of protein extraction protocols. Soil. Biol. Biochem. 54, 14–24 (2012).
  • 47. Jagtap P, Goslinga J, Kooren JA et al. A two-step database search method improves sensitivity in peptide sequence matches for metaproteomics and proteogenomics studies. Proteomics. 13(8), 1352–1357 (2013).
  • 48. Becher D, Bernhardt J, Fuchs S, Riedel K. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives. Proteomics. 13(18–19), 2895–2909 (2013).
  • 49. Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLOS One 6(5), e20611 (2011).
  • 50. Liu D, Keiblinger KM, Leitner S et al. Response of microbial communities and their metabolic functions to drying-rewetting stress in a temperature forest soil. Microorganisms. 7(5), 129 (2019).
  • 51. Yao Q, Li Z, Song Y et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).
  • 52. Lin W, Wu L, Lin S et al. Metaproteomic analysis of ratoon sugarcane rhizospheric soil. BMC Microbiol. 13, 135 (2013).
  • 53. Orellana LH, Hatt JK, Iyer R et al. Comparing DNA, RNA and protein levels for measuring microbial dynamics in soil microcosms amended with nitrogen fertilizer. Sci. Rep. 9, 17630 (2019).
  • 54. Ram RJ, Verberkmoes NC, Thelen MP et al. Community proteomics of a natural microbial biofilm. Science 308(5730), 1915–1920 (2005).
  • 55. Hultman J, Waldrop MP, Mackelprang R et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521(7551), 208–212 (2015).
  • 56. Bastida F, Torres IF, Moreno JL et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soil. Mol. Ecol. 25(18), 4660–4673 (2016).
  • 57. Turner TR, Ramakrishnan K, Walshaw J et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258 (2013).
  • 58. Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of artic peat soil microbiota. AEM. 80(18), 5761–5772 (2014).
  • 59. Shi H, Zhou Y, Jia E, Pan M, Bai Y, Ge Q. Bias in RNA-seq library preparation: current challenges and solutions. Biomed. Res. Int. 2021, 6647597 (2021).
  • 60. Frias-Lopez J, Shi Y, Tyson GW et al. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. 105(10), 3805–3810 (2008).
  • 61. He S, Wurtzel O, Singh K et al. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat. Methods 7, 807–812 (2010).
  • 62. Stewart FJ, Ottesen EA, DeLong EF. Development and quantitative analyses of a microbial universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J. 4(7), 896–907 (2010).
  • 63. Hu A, Lu Y, García MH, Dumont MG. Targeted metatranscriptomics of soil microbial communities with stable isotope probing. In: Methods in Molecular Biology. Dumont MGGarcía MH (Eds). Humana, NY, USA, 163–174 (2019).
  • 64. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 91(2), 246–251 (2012).
  • 65. Arbeli Z, Fuentes CL. Improved purification and PCR amplification of DNA from environmental samples. FEMS Microbiol. Lett. 272(2), 269–275 (2007).
  • 66. Deutscher MP. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res. 34(2), 659–666 (2006).
  • 67. Gómez-Godínez LJ, Fernandez-Valverde SL, Romero JCM, Martínez-Romero E. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. Syst. Appl. Microbiol. 42(4), 517–525 (2019).
  • 68. Sessitsch A, Pfaffenbicher N, Mitter B. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24(3), 194–198 (2019).
  • 69. Chodkowski JL, Shade A. A synthetic community system for probing microbial interactions driven by exometabolites. mSystems 2(6), e00129–e00117 (2017).
  • 70. Choi K, Khan R, Lee SW. Dissection of plant microbiota and plant–microbiome interactions. J. Microbiol. 59, 281–291 (2021).
  • 71. Qiu Z, Egidi E, Liu H, Kaur S, Singh BK. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).
  • 72. de Souza RSC, Armanhi JSL, Arruda P. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front. Plant Sci. 11 (2020).