We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Short CommunicationOpen Accesscc iconby icon

Vancomycin heteroresistance in Staphylococcus haemolyticus: elusive phenotype

    Yamuna Devi Bathavatchalam

    Department of Clinical Microbiology, Christian Medical College, Vellore, India

    ,
    Dhanalakshmi Solaimalai

    Department of Clinical Microbiology, Christian Medical College, Vellore, India

    ,
    Anushree Amladi

    Department of Clinical Microbiology, Christian Medical College, Vellore, India

    ,
    Hariharan Triplicane Dwarakanathan

    Department of Orthopaedics, Christian Medical College, Vellore, India

    ,
    Shalini Anandan

    Department of Clinical Microbiology, Christian Medical College, Vellore, India

    &
    Balaji Veeraraghavan

    *Author for correspondence: Tel.: +91 416 228 2588;

    E-mail Address: vbalaji@cmcvellore.ac.in

    Department of Clinical Microbiology, Christian Medical College, Vellore, India

    Published Online:https://doi.org/10.2144/fsoa-2020-0179

    Aim: To determine the presence of vancomycin heteroresistance in Staphylococcus haemolyticus. Materials & methods: A total of 48 rifampicin-resistant S. haemolyticus isolates from bloodstream infections were included. Vancomycin heteroresistance was determined using the population analysis profile-area under curve (PAP-AUC) method. All the isolates were screened for the presence of mecA gene, mutations in the rpoB gene, staphylococcal cassette chromosome mec and multilocus sequence types. Results: Fifteen isolates were identified as heteroresistant vancomycin-intermediate S. haemolyticus using PAP-AUC method. Dual rpoB mutations (D471E and I527M) contributed for the rifampicin resistance. The sequence types of heteroresistant vancomycin-intermediate S. haemolyticus were highly diverse. Conclusion: These findings illustrate the potential of S. haemolyticus to develop heteroresistance, which emphasizes the need for routine surveillance of S. haemolyticus isolated from intensive care units for infection control practices.

    Lay abstract

    The problem of vancomycin-resistant subpopulations of coagulase-negative Staphylococci is rising worldwide; and may adversely affect the response to treatment. This study was conducted to characterize the resistant subpopulations of Staphylococcus haemolyticus that cause bloodstream infection, which is largely unexplored. We observed the presence of vancomycin-resistant subpopulations of S. haemoltyicus, which are not tested routinely yet should be monitored regularly to potentially improve clinical outcomes.

    References

    • 1. Barros EM, Ceotto H, Bastos MCF, dos Santos KRN, Giambiagi-deMarval M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 50(1), 166–168 (2012).
    • 2. Pain M, Hjerde E, Klingenberg C, Cavanagh JP. Comparative genomic analysis of Staphylococcus haemolyticus reveals key to hospital adaptation and pathogenicity. Front. Microbiol. 10, 2096 (2019).
    • 3. Casapao AM, Leonard SN, Davis SL et al. Clinical outcomes in patients with heterogeneous vancomycin-intermediate Staphylococcus aureus bloodstream infection. Antimicrob. Agents Chemother. 57(9), 4252–4259 (2013).
    • 4. Dao TH, Alsallaq R, Parsons J et al. Vancomycin heteroresistance and clinical outcomes in coagulase-negative Staphylococcal bloodstream infections. Antimicrob. Agents Chemother. doi: 10.1128/AAC.00944-20 (2020) (Epub ahead of print).
    • 5. Peixoto PB, Massinhani FH, Netto Dos Santos KR et al. Methicillin-resistant Staphylococcus epidermidis isolates with reduced vancomycin susceptibility from bloodstream infections in a neonatal intensive care unit. J. Med. Microbiol. 69(1), 41–45 (2020).
    • 6. Chong J, Quach C, Blanchard AC et al. Molecular epidemiology of a vancomycin-intermediate heteroresistant Staphylococcus epidermidis outbreak in a neonatal intensive care unit. Antimicrob. Agents Chemother. 60(10), 5673–5681 (2016).
    • 7. Rasigade JP, Raulin O, Picaud JC et al. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS ONE 7(2), e31548 (2012).
    • 8. Szabó J. hVISA/VISA: diagnostic and therapeutic problems. Expert Rev. Anti Infect. Ther. 7(1), 1–3 (2009).
    • 9. Wootton M, Howe RA, Hillman R, Walsh TR, Bennett PM, MacGowan AP. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J. Antimicrob. Chemother. 47(4), 399–403 (2001).
    • 10. Xu J, Pang L, Ma XX et al. Phenotypic and molecular characterisation of Staphylococcus aureus with reduced vancomycin susceptibility derivated in vitro. Open Med. (Wars.) 13, 475–486 (2018).
    • 11. Matsuo M, Hishinuma T, Katayama Y, Cui L, Kapi M, Hiramatsu K. Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob. Agents Chemother. 55(9), 4188–4195 (2011).
    • 12. Hiramatsu K, Kayayama Y, Matsuo M et al. Vancomycin-intermediate resistance in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2(4), 213–224 (2014).
    • 13. Baines SL, Holt KE, Schultz MB et al. Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant Staphylococcus aureus. mBio 6, e00080 (2015).
    • 14. Alam MT, Petit RA, Crispell EK et al. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol. Evol. 6, 1174–1185 (2014).
    • 15. Deresinski S. The multiple paths to heteroresistance and intermediate resistance to vancomycin in Staphylococcus aureus. J. Infect. Dis. 208(1), 7–9 (2013).
    • 16. Lee JYH, Monk IR, Gonçalves da Silva A et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 3(10), 1175–1185 (2018).
    • 17. Clinical and Laboratory Standards Institute (CLSI). Document M07-A9. Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard (9th Edition). Clinical and Laboratory Standards Institute, PA, USA (2012).
    • 18. Clinical and Laboratory Standards Institute (CLSI). CLSI document M100-S30. Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational Supplement. Clinical and Laboratory Standards Institute, PA, USA (2020).
    • 19. Manoharan M, Sistla S, Ray P. Prevalence and molecular determinants of antimicrobial resistance in clinical isolates of Staphylococcus haemolyticus from India. Microb. Drug Resist. doi:10.1089/mdr.2019.0395 (2020) (Epub ahead of print).
    • 20. Khatib R, Riederer K, Sharma M, Shemes S, Iyer SP, Szpunar S. Screening for intermediately vancomycin-susceptible and vancomycin-heteroresistant Staphylococcus aureus by use of vancomycin-supplemented brain heart infusion agar biplates: defining growth interpretation criteria based on gold standard confirmation. J. Clin. Microbiol. 53(11), 3543–3546 (2015).
    • 21. Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J. Clin. Microbiol. 40(4), 1333–1338 (2002).
    • 22. Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z et al. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 59(Pt 10), 1135–1139 (2010).
    • 23. Milheiriço C, Oliveira DC, de Lencastre H. Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: ‘SCCmec IV multiplex’. J. Antimicrob. Chemother. 60(1), 42–48 (2007).
    • 24. Cavanagh JP, Klingenberg C, Hanssen A-M et al. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis. J. Microbiol. Methods 89(3), 159–166 (2012).
    • 25. Enright MC, Day NP, Davies CE et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38(3), 1008–1015 (2000).
    • 26. van Hal SJ, Jones M, Gosbell IB, Paterson DL. Vancomycin heteroresistance is associated with reduced mortality in ST239 methicillin-resistant Staphylococcus aureus blood stream infections. PLoS ONE 6(6), e21217 (2011).
    • 27. Shariati A, Dadashi M, Moghadam MT et al. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci. Rep. 10(1), 12689 (2020).
    • 28. The Editors. Hetero-resistance: an under-recognised confounder in diagnosis and therapy? J. Med. Microbiol. 50(12), 1018–1020 (2001).
    • 29. Van Der Zwet WC, Debets-Ossenkopp YJ, Reinders E et al. Nosocomial spread of a Staphylococcus capitis strain with heteroresistance to vancomycin in a neonatal intensive care unit. J. Clin. Microbiol. 40(7), 2520–2525 (2002).
    • 30. Zubair M, Zafar A, Ejaz H, Hafeez S, Javaid H, Javed A. Incidence of coagulase negative Staphylococci in neonatal sepsis. Pakistan J. Med. Health Sci. 5(4), 716–719 (2011).
    • 31. Butin M, Rasigade J-P, Martins-Simoes P et al. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin. Microbiol. Infect. 22(1), 46–52 (2016).
    • 32. D'mello D, Daley AJ, Rahman MS et al. Vancomycin heteroresistance in bloodstream isolates of Staphylococcus capitis. J. Clin. Microbiol. 46(9), 3124–3126 (2008).
    • 33. Casapao AM, Leonard SN, Davis SL, Lodise TP, Patel N, Goff DA et al. Clinical outcomes in patients with heterogeneous vancomycin-intermediate Staphylococcus aureus bloodstream infection. Antimicrob. Agents Chemother. 57(9), 4252–4259 (2013).
    • 34. Guérillot R, Gonçalves da Silva A, Monk I et al. Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 3(1), e00550–17 (2018).
    • 35. Bakthavatchalam YD, Babu P, Munusamy E et al. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in methicillin-resistant Staphylococcus aureus: a first report from South India. PLoS ONE 14(12), e0227009 (2019).
    • 36. D'mello D, Daley AJ, Rahman MS et al. Vancomycin heteroresistance in bloodstream isolates of Staphylococcus capitis. J. Clin. Microbiol. 46(9), 3124–3126 (2008).
    • 37. Lee JYH, Monk IR, Gonçalves da Silva A et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 3(10), 1175–1185 (2018).