We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Research ArticleFree Access

Precision multiparameter tracking of inflammation on timescales of hours to years using serial dried blood spots

    Leigh Anderson‡

    *Author for correspondence: Tel.: +1 301 728 1451;

    E-mail Address: leighanderson@siscapa.com

    SISCAPA Assay Technologies, Inc. PO Box 53309, DC 20009, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Morteza Razavi‡

    SISCAPA Assay Technologies, Inc. PO Box 53309, DC 20009, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Matthew E Pope

    SISCAPA Assay Technologies, Inc. PO Box 53309, DC 20009, USA

    ,
    Richard Yip

    SISCAPA Assay Technologies, Inc. PO Box 53309, DC 20009, USA

    ,
    LC Cameron

    Laboratory of Protein Biochemistry: Federal University of State of Rio de Janeiro. CEP: 22290-255, Rio de Janeiro/RJ, Brazil

    ,
    Adriana Bassini-Cameron

    Laboratory of Protein Biochemistry: Federal University of State of Rio de Janeiro. CEP: 22290-255, Rio de Janeiro/RJ, Brazil

    &
    Terry W Pearson

    SISCAPA Assay Technologies, Inc. PO Box 53309, DC 20009, USA

    Published Online:https://doi.org/10.4155/bio-2019-0278

    Aim: High-frequency longitudinal tracking of inflammation using dried blood microsamples provides a new window for personalized monitoring of infections, chronic inflammatory disease and clinical trials of anti-inflammatory drugs. Results/methodology: Using 1662 dried blood spot samples collected by 16 subjects over periods of weeks to years, we studied the behavior of 12 acute phase response and related proteins in inflammation events correlated with infection, vaccination, surgery, intense exercise and Crohn's disease. Proteins were measured using SISCAPA mass spectrometry and normalized to constant plasma volume using low-variance proteins, generating high precision within-person biomarker trajectories with well-characterized personal baselines. Discussion/conclusion: The results shed new light on the dynamic regulation of APR responses, offering a new approach to visualization of multidimensional inflammation trajectories.

    References

    • 1. Bassini A, Cameron LC. Sportomics: building a new concept in metabolic studies and exercise science. Biochem. Biophys. Res. Commun. 445(4), 708–716 (2014).
    • 2. Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 9, 754 (2018).
    • 3. Ridker PM. C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease. Clin. Chem. 55(2), 209–215 (2008).
    • 4. Thompson D, Milford-Ward A, Whicher JT. The value of acute phase protein measurements in clinical practice. Ann. Clin. Biochem. 29, (Pt 2), 123–131 (1992).
    • 5. Kawamura M, Nishida H. The usefulness of serial C-reactive protein measurement in managing neonatal infection. Acta Paediatr. 84(1), 10–13 (1995).
    • 6. Dixon JS, Bird HA, Sitton NG, Pickup ME, Wright V. C-reactive protein in the serial assessment of disease activity in rheumatoid arthritis. Scand. J. Rheumatol. 13(1), 39–44 (2009).
    • 7. Chen X-X, Wang T, Li J, Kang H. Relationship between inflammatory response and estimated complication rate after total hip arthroplasty. Chin. Med. J. 129(21), 2546–2551 (2016).
    • 8. Bessa A, Nissenbaum M, Monteiro A et al. High-intensity ultraendurance promotes early release of muscle injury markers. Br. J. Sports Med. 42(11), 589–593 (2008).
    • 9. Bouloukaki I, Mermigkis C, Tzanakis N et al. Evaluation of inflammatory markers in a large sample of obstructive sleep apnea patients without comorbidities. Mediators Inflamm. 2017(1), 4573756 (2017).
    • 10. Maes M, Delange J, Ranjan R et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res. 66(1), 1–11 (1997).
    • 11. Li H, Zhou L, Wang C et al. Associations between air quality changes and biomarkers of systemic inflammation during the 2014 Nanjing Youth Olympics: a quasi-experimental study. Am. J. Epidemiol. 185(12), 1290–1296 (2017).
    • 12. Markert A, Baumann R, Gerhards B et al. Single and combined exposure to zinc- and copper-containing welding fumes lead to asymptomatic systemic inflammation. J. Occup. Environ. Med. 58(2), 127–132 (2016).
    • 13. Song IU, Cho HJ, Kim JS, Park IS, Lee KS. Serum hs-CRP levels are increased in de Novo Parkinson's disease independently from age of onset. Eur. Neurol. 72(5–6), 285–289 (2014).
    • 14. de Oliveira LC, Franco-Sena AB, Rebelo F et al. Factors associated with maternal serum C-reactive protein throughout pregnancy: a longitudinal study in women of Rio de Janeiro, Brazil. Nutrition 31(9), 1103–1108 (2015).
    • 15. Franks I. IBD: CRP is a good long-term biomarker. Nat. Rev. Gastroenterol. Hepatol. 8(7), 359–359 (2011).
    • 16. Nozoe T, Matsumata T, Kitamura M, Sugimachi K. Significance of preoperative elevation of serum C-reactive protein as an indicator for prognosis in colorectal cancer. Am. J. Surg. 176(4), 335–338 (1998).
    • 17. Jürgens M, Mahachie John JM, Cleynen I et al. Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn's disease. Clin. Gastroenterol. Hepatol. 9(5), 421.e1–427.e1 (2011).
    • 18. Kiss LS, Szamosi T, Molnar T et al. Early clinical remission and normalisation of CRP are the strongest predictors of efficacy, mucosal healing and dose escalation during the first year of adalimumab therapy in Crohn's disease. Aliment. Pharmacol. Ther. 34(8), 911–922 (2011).
    • 19. Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, Burge DJ. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. The Lancet 356(9227), 385–390 (2000).
    • 20. Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM. Pharmacokinetic and pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 16(5), 1652–1661 (2010).
    • 21. Kretsos K, Golor G, Jullion A et al. Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: a randomized phase I study: Clinical Pharmacology in Drug Development. Clin. Pharmacol. Drug Dev. 3(5), 388–395 (2014).
    • 22. Isaacs JD, Harari O, Kobold U, Lee JS, Bernasconi C. Effect of tocilizumab on haematological markers implicates interleukin-6 signalling in the anaemia of rheumatoid arthritis. Arthritis Res. Ther. 15(6), R204 (2013).
    • 23. Noe A, Howard C, Thuren T, Taylor A, Skerjanec A. Pharmacokinetic and pharmacodynamic characteristics of single-dose canakinumab in patients with Type 2 diabetes mellitus. Clin. Ther. 36(11), 1625–1637 (2014).
    • 24. Urien S, Bardin C, Bader-Meunier B et al. Anakinra pharmacokinetics in children and adolescents with systemic-onset juvenile idiopathic arthritis and autoinflammatory syndromes. BMC Pharmacol. Toxicol. 14(1), 40 (2013).
    • 25. Warren MS, Hughes SG, Singleton W, Yamashita M, Genovese MC. Results of a proof of concept, double-blind, randomized trial of a second generation antisense oligonucleotide targeting high-sensitivity C-reactive protein (hs-CRP) in rheumatoid arthritis. Arthritis Res. Ther. 17(1), 80 (2015).
    • 26. Ogami C, Tsuji Y, Muraki Y, Mizoguchi A, Okuda M, To H. Population pharmacokinetics and pharmacodynamics of teicoplanin and C-reactive protein in hospitalized patients with gram-positive infections. Clin. Pharmacol. Drug Dev. (2019). https://accp1.onlinelibrary.wiley.com/doi/10.1002/cpdd.684
    • 27. Rawson TM, Charani E, Moore LSP et al. Exploring the use of C-reactive protein to estimate the pharmacodynamics of vancomycin. Ther. Drug Monit. 40(3), 315–321 (2018).
    • 28. Jansson M. Using pharmacokinetic and pharmacodynamic principles to evaluate individualisation of antibiotic dosing – emphasis on Cefuroxime. Acta Universitatis Upsaliensis ISBN 91Y554Y6499Y8 1–58 (2006).
    • 29. Ridker PM, Rifai N, Pfeffer MA. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).
    • 30. Doherty N, Littman B, Reilly K, Swindell A, Buss J, Anderson NL. Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19(2), 355–363 (1998).
    • 31. Seideman P. Methotrexate – the relationship between dose and clinical effect. Rheumatology 32(8), 751–753 (1993).
    • 32. Held C, White HD, Stewart RAH et al. Inflammatory biomarkers interleukin-6 and c-reactive protein and outcomes in stable coronary heart disease: Experiences From the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J. Am. Heart Assoc. 6(10), (2017). www.ahajournals.org/doi/10.1161/JAHA.116.005077
    • 33. Yang S, Dumitrescu TP. Population pharmacokinetics and pharmacodynamics modelling of dilmapimod in severe trauma subjects at risk for acute respiratory distress syndrome. Drugs RD. 17(1), 145–158 (2017).
    • 34. Moshage H. Cytokines and the hepatic acute phase response. J. Pathol. 181(3), 257–266 (1997).
    • 35. Nishimoto N, Yoshizaki K, Tagoh H et al. Elevation of serum interleukin 6 prior to acute phase proteins on the inflammation by surgical operation. Clin. Immunol. Immunopathol. 50(3), 399–401 (1989).
    • 36. Epstein FH, Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340(6), 448–454 (1999).
    • 37. Razavi M, Leigh Anderson N, Pope ME, Yip R, Pearson TW. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow. New Biotechnol. 33(5 Pt A), 494–502 (2016).
    • 38. Anderson NL, Anderson NG, Haines LR, Hardie DB, Pearson TW. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res. 3(2), 235–244 (2004).
    • 39. Razavi M, Anderson NL, Yip R, Pope ME, Pearson TW. Multiplexed longitudinal measurement of protein biomarkers in DBS using an automated SISCAPA workflow. Bioanalysis 8(15), 1597–1609 (2016).
    • 40. Thavendiranathan P, Bagai A, Ebidia A, Detsky AS, Choudhry NK. Do blood tests cause anemia in hospitalized patients? J. Gen. Intern. Med. 20(6), 520–524 (2005).
    • 41. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32(3), 338–343 (1963).
    • 42. Fraser CG. Biological Variation: From Principles to Practice. American Association for Clinical Chemistry, DC, USA (2001)
    • 43. Shih AWY, McFarlane A, Verhovsek M. Haptoglobin testing in hemolysis: measurement and interpretation. Am. J. Hematol. 89(4), 443–447 (2014).
    • 44. Ascensão A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhães J. Biochemical impact of a soccer match – analysis of oxidative stress and muscle damage markers throughout recovery. Clin. Biochem. 41(10–11), 841–851 (2008).
    • 45. Schneider DS. Tracing personalized health curves during Infections. PLoS Biol. 9(9), e1001158(2011).
    • 46. Razavi M, Farrokhi V, Yip R, Anderson NL, Pearson TW, Neubert H. Measuring the turnover rate of clinically important plasma proteins using an automated SISCAPA workflow. Clin. Chem. 65(3), 492–494 (2019).
    • 47. Huttunen T, Teppo A, Lupisan S, Ruutu P, Nohynek H. Correlation between the severity of infectious diseases in children and the ratio of serum amyloid a protein and C-reactive protein. Scand. J. Infect. Dis. 35(8), 488–490 (2003).
    • 48. Louizos C, Yáñez JA, Forrest ML, Davies NM. Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships. J. Pharm. Pharm. Sci. 17(1), 34 (2014).
    • 49. Gliddon T, Salman S, Robinson JO, Manning L. Modeling C-reactive protein kinetic profiles for use as a clinical prediction tool in patients with Staphylococcus aureus bacteremia. Biomark. Med. 9(10), 947–955 (2015).
    • 50. Bailey DN, Briggs JR. The binding of selected therapeutic drugs to human serum alpha-1 acid glycoprotein and to human serum albumin in vitro. Ther. Drug Monit. 26(1), 40–43 (2004).
    • 51. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107, 363–369 (2003).
    • 52. Landewé R, Nurminen T, Davies O, Baeten D. A single determination of C-reactive protein does not suffice to declare a patient with a diagnosis of axial spondyloarthritis ‘CRP-negative’. Arthritis Res. Ther. 20(1), 209 (2018).
    • 53. Santonocito C, De Loecker I, Donadello K et al. C-reactive protein kinetics after major surgery. Anesth. Analg. 119(3), 624–629 (2014).
    • 54. Neumaier M, Metak G, Scherer MA. C-reactive protein as a parameter of surgical trauma: CRP response after different types of surgery in 349 hip fractures. Acta Orthop. 77(5), 788–790 (2009).
    • 55. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 31(8), 318–324 (2010).
    • 56. Bouguen G, Levesque BG, Feagan BG et al. Treat to target: a proposed new paradigm for the management of Crohn's disease. Clin. Gastroenterol. Hepatol. 13(6), 1042–1050.e2 (2015).
    • 57. Lippi G, Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis. Ann. Transl. Med. 7(12), 270–270 (2019).