We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Dried matrix spots in forensic toxicology

    André Luis Fabris

    *Author for correspondence: Tel.: +55 11 97014 3991;

    E-mail Address: afabris@usp.br

    Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP, 05508-000, Brazil

    &
    Mauricio Yonamine

    Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP, 05508-000, Brazil

    Published Online:https://doi.org/10.4155/bio-2021-0135

    Dried matrix spots (DMS) has gained the attention of different professionals in different fields, including toxicology. Investigations have been carried out in order to assess the potential of using DMS for the analysis of illicit substances, the main interest of forensic toxicologists. This technique uses minimal volumes of samples and solvents, resulting in simple and rapid extraction procedures. Furthermore, it has proved to increase analyte stability, improving storage and transportation. However, DMS presents some limitations: the hematocrit influencing accuracy and inconsistencies regarding the means of spotting samples and adding internal standard on paper. Thus, we provide an overview of analytical methodologies with forensic applications focusing on drugs of abuse and discussing the main particularities, limitations and achievements.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Bang I. Der Blutzucker (4th Edition). J.F. Bergmann, Wiesbaden, Germany (1913).
    • 2. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32, 338–343 (1963).
    • 3. Arnold GL. Inborn errors of metabolism in the 21(st) century: past to present. Ann. Transl. Med. 6(24), 467 (2018).
    • 4. Costa HT, Leopoldino RWD, da Costa TX, Oliveira AG, Martins RR. Drug–drug interactions in neonatal intensive care: a prospective cohort study. Pediatr. Neonatol. 62(2), 151–157 (2020).
    • 5. Gragnaniello V, Gueraldi D, Rubert L et al. Report of five years of experience in neonatal screening for mucopolysaccharidosis type I and review of the literature. Int. J. Neonatal Screen. 6(4), 85 (2020). https://www.mdpi.com/2409-515X/6/4/85
    • 6. Krishna S, Nemerofsky SL, Iyare A, Ramdhanie MA, Nassar M, Nafday S. Early extended neonatal screening for congenital cytomegalovirus infection: a quality improvement initiative. Jt. Comm. J. Qual. Patient Saf. 46(9), 516–523 (2020).
    • 7. Luo X, Sun Y, Xu F et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1,127 newborns. Ann. Transl. Med. 8(17), 1058 (2020).
    • 8. Malikova J, Zingg T, Fingerhut R et al. HIV drug efavirenz inhibits CYP21A2 activity with possible clinical implications. Horm. Res. Paediatr. 91(4), 262–270 (2019).
    • 9. Shepherd M, Knight BA, Laskey K, McDonald TJ. Parental experiences of a diagnosis of neonatal diabetes and perceptions of newborn screening for glucose: a qualitative study. BMJ Open. 10(11), e037312 (2020).
    • 10. Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G. Expanded newborn screening by mass spectrometry: new tests, future perspectives. Mass Spectrom. Rev. 35(1), 71–84 (2016).
    • 11. Pablo A, Breaud AR, Clarke W. Automated analysis of dried urine spot (DUS) samples for toxicology screening. Clin. Biochem. 75, 70–77 (2020).
    • 12. Sadones N, Capiau S, De Kesel PMM, Lambert WE, Stove CP. Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis 6(17), 2211–2227 (2014).
    • 13. Alfazil AA, Anderson RA. Stability of benzodiazepines and cocaine in blood spots stored on filter paper. J. Anal. Toxicol. 32(7), 511–515 (2008).
    • 14. Garcia Boy R, Henseler J, Mattern R, Skopp G. Determination of morphine and 6-acetylmorphine in blood with use of dried blood spots. Ther. Drug Monit. 30(6), 733–739 (2008).
    • 15. Stove CP, Ingels ASME, De Kesel PMM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit. Rev. Toxicol. 42(3), 230–243 (2012).
    • 16. Lizot LLF, da Silva ACC, Bastiani MF et al. Simultaneous determination of cocaine, ecgonine methyl ester, benzoylecgonine, cocaethylene and norcocaine in dried blood spots by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Forensic Sci. Int. 298, 408–416 (2019).
    • 17. Ambach L, Stove C. Determination of cocaine and metabolites in dried blood spots by LC-MS/MS. Methods Mol. Biol. 1872, 261–272 (2019).
    • 18. Kanďár R, Drábková P, Andrlová L, Kostelník A, Čegan A. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection. J. Sep. Sci. 39(22), 4377–4383 (2016).
    • 19. Tominaga M, Michiue T, Ishikawa T, Inamori-Kawamoto O, Oritani S, Maeda H. Evaluation of postmortem drug concentrations in cerebrospinal fluid compared with blood and pericardial fluid. Forensic Sci. Int. 254, 118–125 (2015).
    • 20. Jacques ALB, Santos MK dos, Limberger RP. Development and validation of a method using dried oral fluid spot to determine drugs of abuse. J. Forensic Sci. 64(6), 1906–1912 (2019).
    • 21. Tappin D, Girdwood RA, Follett EC, Kennedy R, Brown A, Cockburn F. Transportation of dried serum spots for HIV antibody testing. Lancet 341(8836), 48–49 (1993).
    • 22. Rago B, Liu J, Tan B, Holliman C. Application of the dried spot sampling technique for rat cerebrospinal fluid sample collection and analysis. J. Pharm. Biomed. Anal. 55(5), 1201–1207 (2011).
    • 23. Henderson LO, Powell MK, Hannon WH et al. Radioimmunoassay screening of dried blood spot materials for benzoylecgonine. J. Anal. Toxicol. 17(1), 42–47 (1993). • Henderson et al. published the first work analyzing drugs of abuse in dried matrix spot (DMS).
    • 24. Moretti M, Freni F, Tomaciello I et al. Determination of benzodiazepines in blood and in dried blood spots collected from post-mortem samples and evaluation of the stability over a three-month period. Drug Test. Anal. 11(9), 1403–1411 (2019).
    • 25. Yuan Y, Xu Y, Lu J. Dried blood spots in doping analysis. Bioanalysis 13(7), 587–604 (2021).
    • 26. Gaugler S, Al-Mazroua MK, Issa SY et al. Fully automated forensic routine dried blood spot screening for workplace testing. J. Anal. Toxicol. 43(3), 212–220 (2019).
    • 27. Houck MM, Siegel JA. Illicit drugs. In: Fundamentals of Forensic Science. Kidlington, Oxford, UK, 315–352 (2015).
    • 28. Jantos R, Skopp G. Comparison of drug analysis in whole blood and dried blood spots. Toxichem. Krimtech. 78, 268–275 (2011). https://www.gtfch.org/cms/images/stories/media/tb/tb2011/jantos.pdf
    • 29. Abdel-rehim M, Pedersen-bjergaard S, Abdel-rehim A, Lucena R. Microextraction approaches for bioanalytical applications: an overview. J. Chromatogr. A 1616, 460790 (2020).
    • 30. Antelo-Domínguez Á, Cocho JÁ, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Simultaneous determination of cocaine and opiates in dried blood spots by electrospray ionization tandem mass spectrometry. Talanta 117, 235–241 (2013).
    • 31. Otero-Fernández M, Cocho JÁ, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A. Direct tandem mass spectrometry for the simultaneous assay of opioids, cocaine and metabolites in dried urine spots. Anal. Chim. Acta. 784, 25–32 (2013).
    • 32. Michely JA, Meyer MR, Maurer HH. Dried urine spots - a novel sampling technique for comprehensive LC-MSn drug screening. Anal. Chim. Acta. 982, 112–121 (2017).
    • 33. Ambach L, Hernández Redondo A, König S, Weinmann W. Rapid and simple LC-MS/MS screening of 64 novel psychoactive substances using dried blood spots. Drug Test. Anal. 6(4), 367–375 (2014). • Ambach et al. achieved remarkable results analyzing 64 substances in a single run with their method.
    • 34. Thevis M, Geyer H, Tretzel L, Schänzer W. Sports drug testing using complementary matrices: advantages and limitations. J. Pharm. Biomed. Anal. 130, 220–230 (2016).
    • 35. Lee Y, Lai KKY, Sadrzadeh SMH. Simultaneous detection of 19 drugs of abuse on dried urine spot by liquid chromatography-tandem mass spectrometry. Clin. Biochem. 46(12), 1118–1124 (2013).
    • 36. Thomas A, Geyer H, Schänzer W et al. Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/Orbitrap mass spectrometer. Anal. Bioanal. Chem. 403(5), 1279–1289 (2012).
    • 37. Wong K, Brady JE, Li G. Establishing legal limits for driving under the influence of marijuana. Inj. Epidemiol. 1(1), 1–8 (2014).
    • 38. Moretti M, Visonà SD, Freni F et al. A liquid chromatography-tandem mass spectrometry method for the determination of cocaine and metabolites in blood and in dried blood spots collected from postmortem samples and evaluation of the stability over a 3-month period. Drug Test. Anal. 10(9), 1430–1437 (2018).
    • 39. Odoardi S, Anzillotti L, Strano-Rossi S. Simplifying sample pretreatment: application of dried blood spot (DBS) method to blood samples, including postmortem, for UHPLC-MS/MS analysis of drugs of abuse. Forensic Sci. Int. 243, 61–67 (2014).
    • 40. Versace F, Déglon J, Lauer E, Mangin P, Staub C. Automated DBS extraction prior to Hilic/RP LC–MS/MS target screening of drugs. Chromatographia. 76(19), 1281–1293 (2013).
    • 41. Delahaye L, Dhont E, De Cock P, De Paepe P, Stove CP. Volumetric absorptive microsampling as an alternative sampling strategy for the determination of paracetamol in blood and cerebrospinal fluid. Anal. Bioanal. Chem. 411(1), 181–191 (2019).
    • 42. Chepyala D, Tsai I-L, Liao H-W, Chen G-Y, Chao H-C, Kuo C-H. Sensitive screening of abused drugs in dried blood samples using ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1491, 57–66 (2017).
    • 43. Gorziza R, Cox J, Pereira Limberger R, Arroyo-Mora LE. Extraction of dried oral fluid spots (DOFS) for the identification of drugs of abuse using liquid chromatography tandem mass spectrometry (LC-MS/MS). Forensic Chem. 19, 100254 (2020).
    • 44. Saussereau E, Lacroix C, Gaulier JM, Goulle JP. On-line liquid chromatography/tandem mass spectrometry simultaneous determination of opiates, cocainics and amphetamines in dried blood spots. J. Chromatogr. B, Anal. Technol. Biomed. Life Sci. 885–886, 1–7 (2012).
    • 45. Kacargil CU, Daglioglu N, Goren IE. Determination of illicit drugs in dried blood spots by LC–MS/MS method: validation and application to real samples. Chromatographia 83(7), 885–892 (2020).
    • 46. Wang Y, Shi Y, Yu Y et al. Screening of synthetic cathinones and metabolites in dried blood spots by UPLC–MS-MS. J. Anal. Toxicol. 45(7), 633–643 (2020).
    • 47. da Cunha KF, Eberlin MN, Costa JL. Long-term stability of synthetic cathinones in dried blood spots and whole blood samples: a comparative study. Forensic Toxicol. 36(2), 424–434 (2018).
    • 48. da Cunha KF, Eberlin MN, Costa JL. Development and validation of a sensitive LC–MS/MS method to analyze NBOMes in dried blood spots: evaluation of long-term stability. Forensic Toxicol. 36(1), 113–121 (2018).
    • 49. Yan X, Yuan S, Yu Z et al. Development of an LC-MS/MS method for determining 5-MeO-DIPT in dried urine spots and application to forensic cases. J. Forensic Leg. Med. 72, 101963 (2020).
    • 50. Sadler Simões S, Castañera Ajenjo A, Dias MJ. Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J. Pharm. Biomed. Anal. 147, 634–644 (2018).
    • 51. Jain R, Quraishi R, Verma A, Ambekar A. Development and clinical evaluation of a dried urine spot method for detection of morphine among opioid users. Indian J. Pharmacol. 51(1), 40–44 (2019).
    • 52. Mercolini L, Mandrioli R, Gerra G, Raggi MA. Analysis of cocaine and two metabolites in dried blood spots by liquid chromatography with fluorescence detection: a novel test for cocaine and alcohol intake. J. Chromatogr. A 1217(46), 7242–7248 (2010).
    • 53. Ingels A-S, De Paepe P, Anseeuw K et al. Dried blood spot punches for confirmation of suspected γ-hydroxybutyric acid intoxications: validation of an optimized GC–MS procedure. Bioanalysis 3(20), 2271–2281 (2011).
    • 54. Mommers J, Mengerink Y, Ritzen E, Weusten J, van der Heijden J, van der Wal S. Quantitative analysis of morphine in dried blood spots by using morphine-d3 pre-impregnated dried blood spot cards. Anal. Chim. Acta. 774, 26–32 (2013).
    • 55. Verplaetse R, Henion J. Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC-MS/MS. Drug Test. Anal. 8(1), 30–38 (2016).
    • 56. Stoykova S, Kanev K, Pantcheva I, Atanasov V. Isolation and characterization of drugs of abuse in oral fluid by a novel preconcentration protocol. Anal. Lett. 49(17), 2822–2832 (2016).
    • 57. Thomas A, Déglon J, Steimer T, Mangin P, Daali Y, Staub C. On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J. Sep. Sci. 33(6‐7), 873–879 (2010).
    • 58. Jantos R, Veldstra JL, Mattern R, Brookhuis KA, Skopp G. Analysis of 3,4-methylenedioxymetamphetamine: whole blood versus dried blood spots. J. Anal. Toxicol. 35(5), 269–273 (2011).
    • 59. Concheiro M, Simões SM dos SS, Quintela Ó et al. Fast LC–MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Sci. Int. 171(1), 44–51 (2007).
    • 60. Saar-Reismaa P, Tretjakova A, Mazina-Šinkar J, Vaher M, Kaljurand M, Kulp M. Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid. Talanta. 197, 390–396 (2019).
    • 61. Kyriakou C, Marchei E, Scaravelli G, García-Algar O, Supervía A, Graziano S. Identification and quantification of psychoactive drugs in whole blood using dried blood spot (DBS) by ultra-performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 128, 53–60 (2016).
    • 62. Mercolini L, Mandrioli R, Sorella V et al. Dried blood spots: liquid chromatography-mass spectrometry analysis of Δ9-tetrahydrocannabinol and its main metabolites. J. Chromatogr. A 1271(1), 33–40 (2013). • The work published by Mercolini et al. is the only work addressing exclusively cannabinoids in DMS.
    • 63. Lin L, Amaratunga P, Reed J, Huang P, Lemberg BL, Lemberg D. Quantitation of Δ8-THC, Δ9-THC, cannabidiol and 10 other cannabinoids and metabolites in oral fluid by HPLC–MS-MS. J. Anal. Toxicol. bkaa184 (2020). https://pubmed.ncbi.nlm.nih.gov/33270860/
    • 64. Pichini S, Mannocchi G, Gottardi M et al. Fast and sensitive UHPLC-MS/MS analysis of cannabinoids and their acid precursors in pharmaceutical preparations of medical cannabis and their metabolites in conventional and non-conventional biological matrices of treated individual. Talanta. 209, 120537 (2020).
    • 65. Stout PR, Horn CK, Lesser DR. Loss of THCCOOH from urine specimens stored in polypropylene and polyethylene containers at different temperatures. J. Anal. Toxicol. 24(7), 567–571 (2000).
    • 66. Desrosiers NA, Lee D, Scheidweiler KB, Concheiro-Guisan M, Gorelick DA, Huestis MA. In vitro stability of free and glucuronidated cannabinoids in urine following controlled smoked cannabis. Anal. Bioanal. Chem. 406(3), 785–792 (2014).
    • 67. Sosnoff CS, Ann Q, Bernert JT Jr et al. Analysis of benzoylecgonine in dried blood spots by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. J. Anal. Toxicol. 20(3), 179–184 (1996).
    • 68. Henderson LO, Powell MK, Hannon WH et al. An evaluation of the use of dried blood spots from newborn screening for monitoring the prevalence of cocaine use among childbearing women. Biochem. Mol. Med. 61(2), 143–151 (1997).
    • 69. Clavijo CF, Hoffman KL, Thomas JJ et al. A sensitive assay for the quantification of morphine and its active metabolites in human plasma and dried blood spots using high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 400(3), 715–728 (2011).
    • 70. Ingels ASME, Lambert WE, Stove CP. Determination of gamma-hydroxybutyric acid in dried blood spots using a simple GC-MS method with direct “on spot” derivatization. Anal. Bioanal. Chem. 398(5), 2173–2182 (2010). • Ingels et al. developed a remarkable approach to work with DMS, the ‘on spot’ derivatization.
    • 71. Ingels ASME, Hertegonne KB, Lambert WE, Stove CP. Feasibility of following up gamma-hydroxybutyric acid concentrations in sodium oxybate (Xyrem®)-treated narcoleptic patients using dried blood spot sampling at home: an exploratory study. CNS Drugs. 27(3), 233–237 (2013).
    • 72. Saracino MA, Catapano MC, Iezzi R, Somaini L, Gerra G, Mercolini L. Analysis of γ-hydroxy butyrate by combining capillary electrophoresis-indirect detection and wall dynamic coating: application to dried matrices. Anal. Bioanal. Chem. 407(29), 8893–8901 (2015).
    • 73. UNODC. Current NPS Threats - Vol III. (October), 6 (2020). https://www.unodc.org/unodc/en/scientists/current-nps-threats.html
    • 74. Oliveira RV, Henion J, Wickremsinhe E. Fully-automated approach for online dried blood spot extraction and bioanalysis by two-dimensional-liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Anal. Chem. 86(2), 1246–1253 (2014).
    • 75. Abu-Rabie P, Spooner N, Chowdhry BZ, Pullen FS. DBS direct elution: optimizing performance in high-throughput quantitative LC–MS/MS analysis. Bioanalysis. 7(16), 2003–2018 (2015).
    • 76. De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 5(16), 2023–2041 (2013).
    • 77. Abu-Rabie P, Denniff P, Spooner N, Brynjolffssen J, Galluzzo P, Sanders G. Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal. Chem. 83(22), 8779–8786 (2011).
    • 78. van Baar BL, Verhaeghe T, Heudi O et al. IS addition in bioanalysis of DBS: results from the EBF DBS-microsampling consortium. Bioanalysis 5(17), 2137–2145 (2013).
    • 79. Protti M, Mandrioli R, Mercolini L. Analytica chimica acta tutorial: volumetric absorptive microsampling (VAMS). Anal. Chim. Acta. 1046, 32–47 (2019). • The review of Protti et al. shows the promising future of dried matrices.
    • 80. Mercolini L, Protti M, Catapano MC, Rudge J, Sberna AE. LC–MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J. Pharm. Biomed. Anal. 123, 186–194 (2016).
    • 81. Protti M, Rudge J, Sberna AE, Gerra G, Mercolini L. Dried haematic microsamples and LC–MS/MS for the analysis of natural and synthetic cannabinoids. J. Chromatogr. B 1044–1045, 77–86 (2017).
    • 82. Protti M, Mandrioli R, Mercolini L. Microsampling and LC-MS/MS for antidoping testing of glucocorticoids in urine. Bioanalysis 12(11), 769–782 (2020).
    • 83. Tagwerker C, Baig I, Brunson EJ, Dutra-Smith D, Carias MJ, de Zoysa RS, Smith DJ. Multiplex analysis of 230 medications and 30 illicit compounds in dried blood spots and urine. J. Anal. Toxicol. 45(6), 581–592 (2020).
    • 84. Mandrioli R, Mercolini L, Protti M. Blood and plasma volumetric absorptive microsampling (VAMS) coupled to LC-MS/MS for the forensic assessment of cocaine consumption. Molecules 25(5), 1046 (2020).
    • 85. Chang WC-W, Cowan DA, Walker CJ, Wojek N, Brailsford AD. Determination of anabolic steroids in dried blood using microsampling and gas chromatography-tandem mass spectrometry: application to a testosterone gel administration study. J. Chromatogr. A 1628, 461445 (2020).
    • 86. Ye Z, Gao H. Evaluation of sample extraction methods for minimizing hematocrit effect on whole blood analysis with volumetric absorptive microsampling. Bioanalysis 9(4), 349–357 (2017).
    • 87. Linhares ALFDA, Yonamine M. Analysis of biofluids by paper spray-MS in forensic toxicology. Bioanalysis 12(15), 1087–1102 (2020).
    • 88. Zubaidi FA, Choo Y-M, Tan G-H, Hamid HA, Choy YK. A novel liquid chromatography tandem mass spectrometry technique using multi-period-multi-experiment of MRM-EPI-MRM3 with library matching for simultaneous determination of amphetamine type stimulants related drugs in whole blood, urine and dried blood S. J. Anal. Toxicol. 43(7), 528–535 (2019).
    • 89. Lødøen CP, Eibak LEE, Rasmussen EK, Pedersen-Bjergaard S, Andersen T, Gjelstad A. Storage of oral fluid as dried spots on alginate and chitosan foam – a new concept for oral fluid collection. Future Sci. OA 5(1), 317–325 (2013).
    • 90. Forni S, Pearl PL, Gibson KM, Yu Y, Sweetman L. Quantitation of gamma-hydroxybutyric acid in dried blood spots: feasibility assessment for newborn screening of succinic semialdehyde dehydrogenase (SSADH) deficiency. Mol. Genet. Metab. 109(3), 255–259 (2013).