We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Chemoinformatic expedition of the chemical space of fungal products

Mariana González-Medina

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

,
Fernando D Prieto-Martínez

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

,
J Jesús Naveja

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

,
Oscar Méndez-Lucio

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

,
Tamam El-Elimat

Department of Medicinal Chemistry & Pharmacognosy, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid 22110, Jordan

Department of Medicinal Chemistry & Pharmacognosy, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid 22110, Jordan

,
Cedric J Pearce

Mycosynthetix, Inc., 505 Meadowland Drive, Suite 103, Hillsborough, NC 27278, USA

Mycosynthetix, Inc., 505 Meadowland Drive, Suite 103, Hillsborough, NC 27278, USA

,
Nicholas H Oberlies

Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC 27402, USA

Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC 27402, USA

,
Mario Figueroa

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

&
José L Medina-Franco

*Author for correspondence:

E-mail Address: medinajl@unam.mx

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México City 04510, México

Published Online:https://doi.org/10.4155/fmc-2016-0079

Aim: Fungi are valuable resources for bioactive secondary metabolites. However, the chemical space of fungal secondary metabolites has been studied only on a limited basis. Herein, we report a comprehensive chemoinformatic analysis of a unique set of 207 fungal metabolites isolated and characterized in a USA National Cancer Institute funded drug discovery project. Results: Comparison of the molecular complexity of the 207 fungal metabolites with approved anticancer and nonanticancer drugs, compounds in clinical studies, general screening compounds and molecules Generally Recognized as Safe revealed that fungal metabolites have high degree of complexity. Molecular fingerprints showed that fungal metabolites are as structurally diverse as other natural products and have, in general, drug-like physicochemical properties. Conclusion: Fungal products represent promising candidates to expand the medicinally relevant chemical space. This work is a significant expansion of an analysis reported years ago for a smaller set of compounds (less than half of the ones included in the present work) from filamentous fungi using different structural properties.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79(3), 629–661 (2016).
  • 2 Muller-Kuhrt L. Putting nature back into drug discovery. Nat. Biotech. 21(6), 602–602 (2003).
  • 3 Stratton CF, Newman DJ, Tan DS. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 25(21), 4802–4807 (2015).
  • 4 Okouneva T, Azarenko O, Wilson L et al. Inhibition of centromere dynamics by Eribulin (E7389) during mitotic metaphase. Mol. Cancer Ther. 7(7), 2003–2011 (2008).
  • 5 Strader CR, Pearce CJ, Oberlies NH. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod. 74(4), 900–907 (2011).
  • 6 El-Elimat T, Zhang X, Jarjoura D et al. Chemical diversity of metabolites from fungi, cyanobacteria, and plants relative to FDA-approved anticancer agents. ACS Med. Chem. Lett. 3(8), 645–649 (2012). • First study of the computational analysis of fungal metabolites.
  • 7 Ayers S, Ehrmann BM, Adcock AF et al. Peptaibols from two unidentified fungi of the order Hypocreales with cytotoxic, antibiotic, and anthelmintic activities. J. Pep. Sci. 18(8), 500–510 (2012).
  • 8 Ayers S, Ehrmann BM, Adcock AF et al. Thielavin B methyl ester: a cytotoxic benzoate trimer from an unidentified fungus (MSX 55526) from the order Sordariales. Tetrahedron Lett. 52(44), 5733–5735 (2011).
  • 9 Ayers S, Graf TN, Adcock AF et al. Resorcylic acid lactones with cytotoxic and NF-kB inhibitory activities and their structure–activity relationships. J. Nat. Prod. 74(5), 1126–1131 (2011).
  • 10 Ayers S, Graf TN, Adcock AF et al. Cytotoxic xanthone-anthraquinone heterodimers from an unidentified fungus of the order Hypocreales (MSX 17022). J. Antibiot. 65, 3–8 (2012).
  • 11 Ayers S, Graf TN, Adcock AF et al. Obionin B: an O-pyranonaphthoquinone decaketide from an unidentified fungus (MSX 63619) from the Order Pleosporales. Tetrahedron Lett. 52(40), 5128–5230 (2011).
  • 12 El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 76(9), 1709–1716 (2013).
  • 13 El-Elimat T, Figueroa M, Raja HA et al. Waol A, trans-dihydrowaol A, and cis-dihydrowaol A: polyketide-derived gamma-lactones from a Volutella species. Tetrahedron Lett. 54(32), 4300–4302 (2013).
  • 14 El-Elimat T, Figueroa M, Raja HA et al. Benzoquinones and terphenyl compounds as phosphodiesterase-4B inhibitors from a fungus of the Order Chaetothyriales (MSX 47445). J. Nat. Prod. 76(3), 382–387 (2013).
  • 15 El-Elimat T, Figueroa M, Raja HA et al. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. Eur. J. Org. Chem. 2015(1), 109–121 (2015).
  • 16 El-Elimat T, Raja HA, Figueroa M et al. Sorbicillinoid analogs with cytotoxic and selective anti-Aspergillus activities from Scytalidium album. J. Antibiot. 68(3), 191–196 (2015).
  • 17 Figueroa M, Graf TN, Ayers S et al. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J. Antibiot. 65(11), 559–564 (2012).
  • 18 Figueroa M, Raja H, Falkinham JO et al. Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401). J. Nat. Prod. 76(6), 1007–1015 (2013).
  • 19 Sy-Cordero AA, Figueroa M, Raja HA et al. Spiroscytalin, a new tetramic acid and other metabolites of mixed biogenesis from Scytalidium cuboideum. Tetrahedron 71(47), 8899–8904 (2015).
  • 20 Sy-Cordero AA, Graf TN, Adcock AF et al. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320). J. Nat. Prod. 74(10), 2137–2142 (2011).
  • 21 Sy-Cordero AA, Graf TN, Wani MC, Kroll DJ, Pearce CJ, Oberlies NH. Dereplication of macrocyclic trichothecenes from extracts of filamentous fungi through UV and NMR profiles. J. Antibiot. 63(9), 539–544 (2010).
  • 22 Sy-Cordero AA, Pearce CJ, Oberlies NH. Revisiting the enniatins: a review of their isolation, biosynthesis, structure determination, and biological activities. J. Antibiot. 65(11), 541–549 (2012).
  • 23 Kaur A, Raja HA, Darveaux BA et al. New diketopiperazine dimer from a filamentous fungal isolate of Aspergillus sydowii. Magn. Reson. Chem. 53(8), 616–619 (2015).
  • 24 Burdock GA, Carabin IG, Griffiths JC. The importance of GRAS to the functional food and nutraceutical industries. Toxicology 221(1), 17–27 (2006).
  • 25 Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43(1), 218–227 (2003).
  • 26 Fernandez-De Gortari E, Medina-Franco JL. Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases. RSC Adv. 5(106), 87465–87476 (2015).
  • 27 Singh N, Guha R, Giulianotti MA, Pinilla C, Houghten RA, Medina-Franco JL. Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J. Chem. Inf. Model. 49(4), 1010–1024 (2009). • Chemoinformatic analysis of natural products using multiple structure representations.
  • 28 Lucas X, Grüning BA, Bleher S, Günther S. The purchasable chemical space: a detailed picture. J. Chem. Inf. Mod. 55(5), 915–924 (2015).
  • 29 Molecular operating environment (MOE), version 2014.08, Chemical Computing Group Inc., Montreal, Quebec, Canada. www.chemcomp.com.
  • 30 Medina-Franco JL, Martínez-Mayorga K, Peppard TL, Del Rio A. Chemoinformatic analysis of GRAS (Generally Recognized as Safe) flavor chemicals and natural products. PLoS ONE 7(11), e50798 (2012).
  • 31 Law V, Knox C, Djoumbou Y et al. Drugbank 4.0: shedding new light on drug metabolism. Nucl. Acids Res. 42(D1), D1091–D1097 (2014).
  • 32 Zhu F, Shi Z, Qin C et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 40, D1128–D1136 (2012).
  • 33 Selleckchem. www.selleckchem.com.
  • 34 Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52(21), 6752–6756 (2009). •• Comprehensive discussion of the association between molecular complexity and clinical success.
  • 35 Clemons PA, Bodycombe NE, Carrinski HA et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl Acad. Sci. USA 107(44), 18787–18792 (2010). • Experimental assessment of the relationship between molecular complexity and target selectivity.
  • 36 Maya ChemTools. www.mayachemtools.org/.
  • 37 Team RDC. R Foundation for Statistical Computing, Vienna, Austria (2011). www.gbif.org/resource/81287.
  • 38 MACCS structural keys. Symyx Software, San Ramon, CA, USA.
  • 39 Rogers D, Hahn M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010).
  • 40 Sander T, Freyss J, Von Korff M, Rufener C. Datawarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55(2), 460–473 (2015).
  • 41 López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL. Expanding the medicinally relevant chemical space with compound libraries. Drug Discovery Today 17(13–14), 718–726 (2012).
  • 42 Allu TK, Oprea TI. Rapid evaluation of synthetic and molecular complexity for in silico chemistry. J. Chem. Inf. Model. 45(5), 1237–1243 (2005).
  • 43 Böttcher T. An additive definition of molecular complexity. J. Chem. Inf. Model. 56(3), 462–470 (2016).
  • 44 Jaccard P. Etude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901).
  • 45 Medina-Franco JL, Maggiora GM. Molecular similarity analysis. In: Chemoinformatics for Drug Discovery. Bajorath J (Ed.). John Wiley & Sons, NJ, USA, 343–399 (2014).
  • 46 Yongye AB, Waddell J, Medina-Franco JL. Molecular scaffold analysis of natural products databases in the public domain. Chem. Biol. Drug Des. 80(5), 717–724 (2012).
  • 47 Medina-Franco JL, Martinez-Mayorga K, Meurice N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin. Drug Discov. 9(2), 151–165 (2014).
  • 48 Bergström CA. In silico predictions of drug solubility and permeability: two rate-limiting barriers to oral drug absorption. Basic Clin. Pharmacol. Toxicol. 96(3), 156–161 (2005).
  • 49 Ganesan A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12(3), 306–317 (2008).
  • 50 Medina-Franco JL. Discovery and development of lead compounds from natural sources using computational approaches. In: Evidence-Based Validation of Herbal Medicine. Mukherjee P (Ed.). Elsevier, Amsterdam, The Netherlands, 455–475 (2015). • Recent review of natural product-based drug discovery driven by computational methods.