We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy

    Chandan Kumar

    Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India

    ,
    Nidhi Rani

    Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India

    ,
    Palanisamy Thanga Velan Lakshmi

    *Author for correspondence:

    E-mail Address: lakanna@bicpu.edu.in

    Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India

    &
    Annamalai Arunachalam

    Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India

    Published Online:https://doi.org/10.4155/fmc-2016-0113

    The finding of promising drugs represents a huge challenge in cancer therapeutics, therefore it is important to seek out novel approaches and elucidate essential cellular processes in order to identify potential drug targets. Studies on DNA repair pathway suggested that an enzyme, PARP, which plays a significant role in DNA repair responses, could be targeted in cancer therapy. Hence, the efficacy of PARP inhibitors in cancer therapy has been investigated and has progressed from the laboratory to clinics, with olaparib having already been approved by the US FDA for ovarian cancer treatment. Here, we have discussed the development of PARP inhibitors, strategies to improve their selectivity and efficacy, including innovative combinational and synthetic lethality approaches to identify effective PARP inhibitors in cancer treatment.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 432(7015), 316–323 (2004).
    • 2 Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).
    • 3 Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 411(6835), 366–374 (2001).
    • 4 Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal. 10(5), 891–937 (2008).
    • 5 Hosoya N, Miyagawa K. Targeting DNA damage response in cancer therapy. Cancer Sci. 105(4), 370–388 (2014).
    • 6 Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol. 25(7), 406–411 (2006).
    • 7 Sanchez-Perez I. DNA repair inhibitors in cancer treatment. Clin. Transl. Oncol. 8(9), 642–646 (2006).
    • 8 Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex. Science 308(5721), 551–554 (2005).
    • 9 Matsuoka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828), 1160–1166 (2007).
    • 10 El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucl. Acids Res. 31(19), 5526–5533 (2003).
    • 11 Kamileri I, Karakasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. Trends Genet. 28(11), 566–573 (2012).
    • 12 Kim H, D'Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26(13), 1393–1408 (2012).
    • 13 Bentle MS, Bey EA, Dong Y, Reinicke KE, Boothman DA. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J. Mol. Histol. 37(5–7), 203–218 (2006).
    • 14 Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43 (1963).
    • 15 Nishizuka Y, Ueda K, Nakazawa K, Hayaishi O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J. Biol. Chem. 242(13), 3164–3171 (1967).
    • 16 Okayama H, Edson CM, Fukushima M, Ueda K, Hayaishi O. Purification and properties of poly(adenosine diphosphate ribose) synthetase. J. Biol. Chem. 252(20), 7000–7005 (1977).
    • 17 D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342(Pt 2), 249–268 (1999).
    • 18 Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).
    • 19 Burkle A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 23(9), 795–806 (2001).
    • 20 Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119(6), 803–814 (2004).
    • 21 Schreiber V, Dantzer F, Ame JC, De Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7(7), 517–528 (2006). • Describes the PARP members domain organizations and their roles in different cellular functions.
    • 22 Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol. Cell. 39(1), 8–24 (2010).
    • 23 De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem. Pharmacol. 84(2), 137–146 (2012). • Explains the role of PARP-1, PARP-2 and PARP-3 in DNA-dependent activity, which plays crucial role in DNA repair pathways.
    • 24 Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem. Sci. 35(4), 208–219 (2010).
    • 25 Ame JC, Spenlehauer C, De Murcia G. The PARP superfamily. Bioessays 26(8), 882–893 (2004).
    • 26 Vyas S, Chang P. New PARP targets for cancer therapy. Nat. Rev. Cancer 14(7), 502–509 (2014).
    • 27 Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J. Clin. Oncol. 33(12), 1397–1406 (2015).
    • 28 Ame JC, Rolli V, Schreiber V et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274(25), 17860–17868 (1999).
    • 29 Boehler C, Gauthier LR, Mortusewicz O et al. Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl Acad. Sci. USA 108(7), 2783–2788 (2011).
    • 30 Smith S, Giriat I, Schmitt A, De Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282(5393), 1484–1487 (1998).
    • 31 Cook BD, Dynek JN, Chang W, Shostak G, Smith S. Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22(1), 332–342 (2002).
    • 32 Reiss KA, Herman JM, Zahurak M et al. A Phase I study of veliparib (ABT-888) in combination with low-dose fractionated whole abdominal radiation therapy in patients with advanced solid malignancies and peritoneal carcinomatosis. Clin. Cancer Res. 21(1), 68–76 (2015). • Showed combinations of PARP inhibitors with low dose of radiation therapy, which demonstrated an alternative approach of combination in lower or different doses.
    • 33 Papeo G, Posteri H, Borghi D et al. Discovery of 2-(1-[4,4-difluorocyclohexyl]piperidin-4-yl)-6-fluoro-3-oxo-2,3-dihydro-1H-isoind ole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J. Med. Chem. 58(17), 6875–6898 (2015).
    • 34 Ledermann J, Harter P, Gourley C et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised Phase 2 trial. Lancet Oncol. 15(8), 852–861 (2014).
    • 35 Huang SM, Mishina YM, Liu S et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264), 614–620 (2009).
    • 36 Langelier MF, Planck JL, Roy S, Pascal JM. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336(6082), 728–732 (2012). •• Provides the interactions pattern details of PARP-1 in complex with an inhibitor and DNA.
    • 37 Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell. Biol. 13(7), 411–424 (2012).
    • 38 Chou HY, Chou HT, Lee SC. CDK-dependent activation of poly(ADP-ribose) polymerase member 10 (PARP10). J. Biol. Chem. 281(22), 15201–15207 (2006).
    • 39 Karlberg T, Thorsell AG, Kallas A, Schuler H. Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain. J. Biol. Chem. 287(29), 24077–24081 (2012).
    • 40 Karras GI, Kustatscher G, Buhecha HR et al. The macro domain is an ADP-ribose binding module. EMBO J. 24(11), 1911–1920 (2005).
    • 41 Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26(5), 417–432 (2012).
    • 42 Masutani M, Fujimori H. Poly(ADP-ribosyl)ation in carcinogenesis. Mol. Aspects Med. 34(6), 1202–1216 (2013).
    • 43 Menissier De Murcia J, Ricoul M et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22(9), 2255–2263 (2003).
    • 44 Nicolas L, Martinez C, Baro C et al. Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene 29(19), 2877–2883 (2010).
    • 45 Tong WM, Cortes U, Hande MP et al. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res. 62(23), 6990–6996 (2002).
    • 46 Tanori M, Mancuso M, Pasquali E et al. PARP-1 cooperates with Ptc1 to suppress medulloblastoma and basal cell carcinoma. Carcinogenesis 29(10), 1911–1919 (2008).
    • 47 Piskunova TS, Zabezhinskii MA, Popovich IG, Tyndyk ML, Iurova MN, Anisimov VN. [Diethylnitrosamine-induced carcinogenesis in PARP-1(-/-) and PARP-1(+/+) mice]. Vopr. Onkol. 55(5), 608–611 (2009).
    • 48 Hassler M, Ladurner AG. Towards a structural understanding of PARP1 activation and related signalling ADP-ribosyl-transferases. Curr. Opin. Struct. Biol. 22(6), 721–729 (2012).
    • 49 Althaus FR, Richter C. ADP-ribosylation of proteins. Enzymology and biological significance. Mol. Biol. Biochem. Biophys. 37, 1–237 (1987).
    • 50 Haince JF, Mcdonald D, Rodrigue A et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283(2), 1197–1208 (2008).
    • 51 Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell. Biol. 9(4), 297–308 (2008).
    • 52 Belzile JP, Choudhury SA, Cournoyer D, Chow TY. Targeting DNA repair proteins: a promising avenue for cancer gene therapy. Curr. Gene. Ther. 6(1), 111–123 (2006).
    • 53 Wang M, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucl. Acids Res. 34(21), 6170–6182 (2006).
    • 54 Truong LN, Li Y, Shi LZ et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl Acad. Sci. USA 110(19), 7720–7725 (2013).
    • 55 Schreiber V, Ame JC, Dolle P et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277(25), 23028–23036 (2002).
    • 56 Rulten SL, Fisher AE, Robert I et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell. 41(1), 33–45 (2011).
    • 57 Langelier MF, Planck JL, Roy S, Pascal JM. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem. 286(12), 10690–10701 (2011).
    • 58 Nagaoka M, Kuwahara J, Sugiura Y. Alteration of DNA binding specificity by nickel (II) substitution in three zinc (II) fingers of transcription factor Sp1. Biochem. Biophys. Res. Commun. 194(3), 1515–1520 (1993).
    • 59 Wilcox DE, Schenk AD, Feldman BM, Xu Y. Oxidation of zinc-binding cysteine residues in transcription factor proteins. Antioxid. Redox Signal. 3(4), 549–564 (2001).
    • 60 Hartwig A, Asmuss M, Blessing H et al. Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food. Chem. Toxicol. 40(8), 1179–1184 (2002).
    • 61 Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr. 139(9), 1626–1631 (2009).
    • 62 Buki KG, Bauer PI, Mendeleyev J, Hakam A, Kun E. Destabilization of Zn2+ coordination in ADP-ribose transferase (polymerizing) by 6-nitroso-1,2-benzopyrone coincidental with inactivation of the polymerase but not the DNA binding function. FEBS Lett. 290(1–2), 181–185 (1991).
    • 63 Cosi C. New inhibitors of poly(ADP-ribose) polymerase and their potential therapeutic targets. Expert Opin. Ther. Pat. 12(7), 1047–1071 (2002).
    • 64 Mendes F, Groessl M, Nazarov AA et al. Metal-based inhibition of poly(ADP-ribose) polymerase – the guardian angel of DNA. J. Med. Chem. 54(7), 2196–2206 (2011).
    • 65 Ellisen LW. PARP inhibitors in cancer therapy: promise, progress, and puzzles. Cancer Cell 19(2), 165–167 (2011).
    • 66 Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH. Failure of iniparib to inhibit poly(ADP-ribose) polymerase in vitro. Clin. Cancer Res. 18(6), 1655–1662 (2012).
    • 67 Sun X, Zhou X, Du L et al. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. Toxicol. Appl. Pharmacol. 274(2), 313–318 (2014).
    • 68 Cooper KL, Dashner EJ, Tsosie R, Cho YM, Lewis J, Hudson LG. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium. Toxicol. Appl. Pharmacol. 291, 13–20 (2016). • Explain the role of arsenite and uranium in inhibition of DNA repair by disruption of PARP-1, the zinc finger domain.
    • 69 Leung CC, Glover JN. BRCT domains: easy as one, two, three. Cell Cycle 10(15), 2461–2470 (2011).
    • 70 Loeffler PA, Cuneo MJ, Mueller GA, Derose EF, Gabel SA, London RE. Structural studies of the PARP-1 BRCT domain. BMC Struct. Biol. 11, 37 (2011).
    • 71 Azzarito V, Long K, Murphy NS, Wilson AJ. Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat. Chem. 5(3), 161–173 (2013).
    • 72 Na Z, Peng B, Ng S et al. A small-molecule protein–protein interaction inhibitor of PARP1 that targets its BRCT domain. Angew. Chem. Int. Ed. Engl. 54(8), 2515–2519 (2015). •• Provided scope for development of selective PARP-1 inhibitors by targeting to breast cancer susceptibility protein1 C-terminus domain.
    • 73 Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J. 185(3), 775–777 (1980).
    • 74 Suto MJ, Turner WR, Arundel-Suto CM, Werbel LM, Sebolt-Leopold JS. Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des. 6(2), 107–117 (1991).
    • 75 Skalitzky DJ, Marakovits JT, Maegley KA et al. Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J. Med. Chem. 46(2), 210–213 (2003).
    • 76 Canan Koch SS, Thoresen LH, Tikhe JG et al. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: design, synthesis, and x-ray cocrystal structure. J. Med. Chem. 45(23), 4961–4974 (2002).
    • 77 Iwashita A, Hattori K, Yamamoto H et al. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP-ribose) polymerase-1/2 inhibitors. FEBS Lett. 579(6), 1389–1393 (2005).
    • 78 Ruf A, Mennissier De Murcia J, De Murcia G, Schulz GE. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl Acad. Sci. USA 93(15), 7481–7485 (1996). •• Provided the first interactions detail of catalytic domain of PARP inhibitor (PD 128763), which led to the identification of various novel inhibitors.
    • 79 Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361(2), 123–134 (2009).
    • 80 Plummer R, Jones C, Middleton M et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 14(23), 7917–7923 (2008).
    • 81 Jones P, Altamura S, Boueres J et al. Discovery of 2-(4-[(3S)-piperidin-3-yl]phenyl)-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 52(22), 7170–7185 (2009).
    • 82 Shen Y, Rehman FL, Feng Y et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 19(18), 5003–5015 (2013).
    • 83 Miknyoczki S, Chang H, Grobelny J et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol. Cancer Ther. 6(8), 2290–2302 (2007).
    • 84 Russo AL, Kwon HC, Burgan WE et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin. Cancer Res. 15(2), 607–612 (2009).
    • 85 Toth O, Szabo C, Kecskes M, Poto L, Nagy A, Losonczy H. In vitro effect of the potent poly(ADP-ribose) polymerase (PARP) inhibitor INO-1001 alone and in combination with aspirin, eptifibatide, tirofiban, enoxaparin or alteplase on haemostatic parameters. Life Sci. 79(4), 317–323 (2006).
    • 86 Zhou Q, Ji M, Zhou J et al. Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer. Biochem. Pharmacol. 107, 29–40 (2016).
    • 87 Kirsanov KI, Kotova E, Makhov P et al. Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget 5(2), 428–437 (2014). •• Explains the inhibition of PARP-1 by targeting to DNA molecules consequently disturbs the interactions of PARP-1 to damaged DNA.
    • 88 Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem. 53(12), 4561–4584 (2010).
    • 89 Costantino G, Macchiarulo A, Camaioni E, Pellicciari R. Modeling of poly(ADP-ribose)polymerase (PARP) inhibitors. Docking of ligands and quantitative structure–activity relationship analysis. J. Med. Chem. 44(23), 3786–3794 (2001).
    • 90 Bellocchi D, Macchiarulo A, Costantino G, Pellicciari R. Docking studies on PARP-1 inhibitors: insights into the role of a binding pocket water molecule. Bioorg. Med. Chem. 13(4), 1151–1157 (2005). • Helped in the identifications of diverse chemical scaffolds for the development of potent PARP inhibitors through structure–activity relationship and quantitative structure activity relationship studies.
    • 91 Thomas HD, Calabrese CR, Batey MA et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 6(3), 945–956 (2007).
    • 92 Andersson CD, Karlberg T, Ekblad T et al. Discovery of ligands for ADP-ribosyltransferases via docking-based virtual screening. J. Med. Chem. 55(17), 7706–7718 (2012).
    • 93 Singh SS, Sarma J, Narasu L. Fragment based design, docking and biological evaluation to identify novel PARP1 inhibitors and their role in cancer. IJCMC 1, 35–43 (2013).
    • 94 Hannigan K, Kulkarni SS, Bdzhola VG, Golub AG, Yarmoluk SM, Talele TT. Identification of novel PARP-1 inhibitors by structure-based virtual screening. Bioorg. Med. Chem. Lett. 23(21), 5790–5794 (2013).
    • 95 Giannini G, Battistuzzi G, Vesci L et al. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Bioorg. Med. Chem. Lett. 24(2), 462–466 (2014).
    • 96 Miaomiao N, Yueqing G. An in silico protocol for identifying potential poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors from chemical databases. New J. Chem. 39, 1060–1066 (2014).
    • 97 Chen KC, Sun MF, Chen CY. In silico investigation of potential PARP-1 inhibitors from traditional chinese medicine. Evid. Based Complement. Alternat. Med. 2014, 917605 (2014).
    • 98 Jing-Wei L, Ting-Jian Z, Zuo-Jing L, Zai-Xing C, Xin-Li Y, Fan-Hao M. Predicting potential antitumor targets of Aconitum alkaloids by molecular docking and protein–ligand interaction fingerprint. Med. Chem. Res. 25(6), 1115–1124 (2016).
    • 99 Clark JB, Ferris GM, Pinder S. Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5′-methyl nicotinamide. Biochim. Biophys. Acta 238(1), 82–85 (1971).
    • 100 Durkacz BW, Irwin J, Shall S. Inhibition of (ADP-ribose)n biosynthesis retards DNA repair but does not inhibit DNA repair synthesis. Biochem. Biophys. Res. Commun. 101(4), 1433–1441 (1981).
    • 101 Banasik M, Komura H, Shimoyama M, Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267(3), 1569–1575 (1992).
    • 102 Griffin RJ, Pemberton LC, Rhodes D et al. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des. 10(6), 507–514 (1995).
    • 103 Calabrese CR, Almassy R, Barton S et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96(1), 56–67 (2004).
    • 104 Tentori L, Leonetti C, Scarsella M et al. Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clin. Cancer Res. 9(14), 5370–5379 (2003).
    • 105 Miknyoczki SJ, Jones-Bolin S, Pritchard S et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther. 2(4), 371–382 (2003).
    • 106 Racz I, Tory K, Gallyas F Jr et al. BGP-15 – a novel poly(ADP-ribose) polymerase inhibitor – protects against nephrotoxicity of cisplatin without compromising its antitumor activity. Biochem. Pharmacol. 63(6), 1099–1111 (2002).
    • 107 Branca D, Cerretani M, Jones P et al. Identification of aminoethyl pyrrolo dihydroisoquinolinones as novel poly(ADP-ribose) polymerase-1 inhibitors. Bioorg. Med. Chem. Lett. 19(15), 4042–4045 (2009).
    • 108 Orvieto F, Branca D, Giomini C et al. Identification of substituted pyrazolo(1,5-a)quinazolin-5(4H)-one as potent poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors. Bioorg. Med. Chem. Lett. 19(15), 4196–4200 (2009).
    • 109 Murai J, Huang SY, Renaud A et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13(2), 433–443 (2014).
    • 110 Patel MR, Bhatt A, Steffen JD et al. Discovery and structure–activity relationship of novel 2,3-dihydrobenzofuran-7-carboxamide and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide derivatives as poly(ADP-ribose)polymerase-1 inhibitors. J. Med. Chem. 57(13), 5579–5601 (2014).
    • 111 Xie Z, Zhou Y, Zhao W et al. Identification of novel PARP-1 inhibitors: drug design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 25(20), 4557–4561 (2015).
    • 112 Oliver AW, Ame JC, Roe SM, Good V, De Murcia G, Pearl LH. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucl. Acids Res. 32(2), 456–464 (2004).
    • 113 Kinoshita T, Nakanishi I, Warizaya M et al. Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett. 556(1–3), 43–46 (2004).
    • 114 Eltze T, Boer R, Wagner T et al. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors. Mol. Pharmacol. 74(6), 1587–1598 (2008).
    • 115 Menear KA, Adcock C, Boulter R et al. 4-(3-[4-cyclopropanecarbonylpiperazine-1-carbonyl]-4-fluorobenzyl)-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51(20), 6581–6591 (2008).
    • 116 Evers B, Drost R, Schut E et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14(12), 3916–3925 (2008).
    • 117 Pellicciari R, Camaioni E, Costantino G et al. On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem 3(6), 914–923 (2008).
    • 118 Kirby CA, Cheung A, Fazal A, Shultz MD, Stams T. Structure of human tankyrase 1 in complex with small-molecule inhibitors PJ34 and XAV939. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68(Pt 2), 115–118 (2012).
    • 119 Chen B, Dodge ME, Tang W et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5(2), 100–107 (2009).
    • 120 Waaler J, Machon O, Tumova L et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 72(11), 2822–2832 (2012).
    • 121 Yashiroda Y, Okamoto R, Hatsugai K et al. A novel yeast cell-based screen identifies flavone as a tankyrase inhibitor. Biochem. Biophys. Res. Commun. 394(3), 569–573 (2010).
    • 122 Lindgren AE, Karlberg T, Thorsell AG et al. PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3. ACS Chem. Biol. 8(8), 1698–1703 (2013).
    • 123 Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Acta. Crystallogr. F Struct. Biol. Commun. 70(Pt 9), 1143–1149 (2014). •• Explain the selectivity of BMN-673 for PARP-1 and PARP-2 by interacting with specific site, D-loop (outer edges of the nicotinamide-binding pocket).
    • 124 Paine HA, Nathubhai A, Woon EC et al. Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro. Bioorg. Med. Chem. 23(17), 5891–5908 (2015).
    • 125 Morgan RK, Carter-O'Connell I, Cohen MS. Selective inhibition of PARP10 using a chemical genetics strategy. Bioorg. Med. Chem. Lett. 25(21), 4770–4773 (2015).
    • 126 Jacobson EL, Smith JY, Wielckens K, Hilz H, Jacobson MK. Cellular recovery of dividing and confluent C3H10T1/2 cells from N-methyl-N’-nitro-N-nitrosoguanidine in the presence of ADP-ribosylation inhibitors. Carcinogenesis 6(5), 715–718 (1985).
    • 127 Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035), 913–917 (2005).
    • 128 Farmer H, Mccabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035), 917–921 (2005).
    • 129 Tutt A, Robson M, Garber JE et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737), 235–244 (2010).
    • 130 Khan OA, Gore M, Lorigan P et al. A Phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br. J. Cancer 104(5), 750–755 (2011).
    • 131 Ledermann J, Harter P, Gourley C et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366(15), 1382–1392 (2012).
    • 132 Kaufman B, Shapira-Frommer R, Schmutzler RK et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33(3), 244–250 (2015).
    • 133 Taniguchi T, Tischkowitz M, Ameziane N et al. Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nat. Med. 9(5), 568–574 (2003).
    • 134 Weston VJ, Oldreive CE, Skowronska A et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 116(22), 4578–4587 (2010).
    • 135 Vilar E, Bartnik CM, Stenzel SL et al. MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res. 71(7), 2632–2642 (2011).
    • 136 Postel-Vinay S, Bajrami I, Friboulet L et al. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32(47), 5377–5387 (2013).
    • 137 Williamson CT, Kubota E, Hamill JD et al. Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol. Med. 4(6), 515–527 (2012).
    • 138 Mendes-Pereira AM, Martin SA, Brough R et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1(6–7), 315–322 (2009).
    • 139 The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011).
    • 140 Gelmon KA, Tischkowitz M, Mackay H et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a Phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12(9), 852–861 (2011).
    • 141 Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys. 58(2), 410–419 (2004).
    • 142 Chatterjee P, Choudhary GS, Sharma A et al. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS ONE 8(4), e60408 (2013).
    • 143 Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med. 34(6), 1217–1256 (2013).
    • 144 Munoz-Gamez JA, Martin-Oliva D, Aguilar-Quesada R et al. PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J. 386(Pt 1), 119–125 (2005).
    • 145 Liu JF, Konstantinopoulos PA, Matulonis UA. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol. Oncol. 133(2), 362–369 (2014).
    • 146 Samol J, Ranson M, Scott E et al. Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: a Phase I study. Invest. New Drugs 30(4), 1493–1500 (2012).
    • 147 Ellenberger T, Tomkinson AE. Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 77, 313–338 (2008).
    • 148 Tobin LA, Robert C, Rapoport AP et al. Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene 32(14), 1784–1793 (2013). •• Showed a possible effective combination of DNA ligase inhibitor with PARP inhibitor.
    • 149 Singh DK, Krishna S, Chandra S, Shameem M, Deshmukh AL, Banerjee D. Human DNA ligases: a comprehensive new look for cancer therapy. Med. Res. Rev. 34(3), 567–595 (2014).
    • 150 Tentori L, Lacal PM, Muzi A et al. Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. Eur. J. Cancer 43(14), 2124–2133 (2007).
    • 151 Pyriochou A, Olah G, Deitch EA, Szabo C, Papapetropoulos A. Inhibition of angiogenesis by the poly(ADP-ribose) polymerase inhibitor PJ-34. Int. J. Mol. Med. 22(1), 113–118 (2008).
    • 152 Dean E, Middleton MR, Pwint T et al. Phase I study to assess the safety and tolerability of olaparib in combination with bevacizumab in patients with advanced solid tumours. Br. J. Cancer 106(3), 468–474 (2012).
    • 153 Liu JF, Barry WT, Birrer M et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised Phase 2 study. Lancet. Oncol. 15(11), 1207–1214 (2014). • Represented the better effect of PARP inhibitor with VEGF inhibitior for the inhibition of DNA repair pathways.
    • 154 Juvekar A, Burga LN, Hu H et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2(11), 1048–1063 (2012).
    • 155 Ibrahim YH, Garcia-Garcia C, Serra V et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discoc. 2(11), 1036–1047 (2012). • Provided the effective way of treatment by the combination of PI3K inhibitor with olaparib, which reduces the effect of PARP inhibitor toxicity.
    • 156 Mclachlan J, Banerjee S. Olaparib for the treatment of epithelial ovarian cancer. Expert Opin. Pharmacother. 17(7), 995–1003 (2016).
    • 157 Rajan A, Carter CA, Kelly RJ et al. A Phase I combination study of olaparib with cisplatin and gemcitabine in adults with solid tumors. Clin. Cancer Res. 18(8), 2344–2351 (2012).
    • 158 Plummer R, Lorigan P, Steven N et al. A Phase II study of the potent PARP inhibitor, rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother. Pharmacol. 71(5), 1191–1199 (2013).
    • 159 Kristeleit R, Swisher E, Oza AM et al. Final results of ARIEL2 (Part 1): a Phase 2 trial to prospectively identify ovarian cancer (OC) responders to rucaparib using tumor genetic analysis. European Cancer Congress 51, S531 (2015).
    • 160 Drew Y, Ledermann J, Hall G et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br. J. Cancer 114(7), 723–730 (2016).
    • 161 Kummar S, Chen A, Ji J et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res. 71(17), 5626–5634 (2011).
    • 162 Kummar S, Ji J, Morgan R et al. A Phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin. Cancer Res. 18(6), 1726–1734 (2012).
    • 163 Davidson D, Wang Y, Aloyz R, Panasci L. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest. New. Drugs. 31(2), 461–468 (2013).
    • 164 Kummar S, Oza AM, Fleming GF et al. Randomized trial of oral cyclophosphamide and veliparib in high-grade serous ovarian, primary peritoneal, or fallopian tube cancers, or BRCA-mutant ovarian cancer. Clin. Cancer Res. 21(7), 1574–1582 (2015).
    • 165 Sandhu SK, Schelman WR, Wilding G et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a Phase 1 dose–escalation trial. Lancet Oncol. 14(9), 882–892 (2013).
    • 166 Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6(3), 231–248 (2007).