We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Learning from nature: the role of albumin in drug delivery

    Maria J Matos

    *Author for correspondence:

    E-mail Address: mariacmatos@gmail.com

    Faculty of Pharmacy, Department of Organic Chemistry, University of Santiago of Compostela,15782 Santiago de Compostela, Spain

    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

    Published Online:https://doi.org/10.4155/fmc-2018-0053

    Graphical Abstract

    References

    • 1 Elsadek B, Kratz FJ. Impact of albumin on drug delivery – new applications on the horizon. J. Control Rel. 157, 4–28 (2012).
    • 2 Woodcock J. Two recent scientific advances underscore an encouraging future for precision medicine at FDA. https://blogs.fda.gov/fdavoice/index.php/tag/targeted-therapies/.
    • 3 Kenanova VE, Olafsen T, Salazar FB et al. Tuning the serum persistence of human serum albumin domain III: diabody fusion proteins. Protein Eng. Des. Sel. 23(10), 789–798 (2010).
    • 4 Bern M, Sand KM, Nilsen J et al. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J. Control Rel. 211, 144–162 (2015).
    • 5 Larsen MT, Kuhlmann M, Hvam ML et al. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 4(3), doi:10.1186/s40591-016-0048-8 (2016).
    • 6 Bernardim B, Cal PMSD, Matos MJ et al. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat. Commun. 7, 13128 (2016).
    • 7 Krall N, da Cruz FP, Boutureira O et al. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8(2), 103–113 (2016).
    • 8 Spicer CD, Davis BG. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).
    • 9 Sleep D. Albumin and its application in drug delivery. Expert Opin. Drug Deliv. 12(5), 793–812 (2015).
    • 10 Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control Rel. 132, 171–183 (2008).
    • 11 Wunder A, Stehle G, Sinn H et al. Enhanced albumin uptake by rat tumors. Int. J. Oncol. 11, 497–507 (1997).
    • 12 Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater. Sci. Eng. C Mater. Biol. Appl. 81, 607–626 (2017).
    • 13 Bhushan B, Khanadeev V, Khlebtsov B et al. Impact of albumin based approaches in nanomedicine: imaging, targeting and drug delivery. Adv. Colloid Interface Sci. 246, 13–39 (2017).
    • 14 Gou Y, Zhang Z, Li D et al. HSA-based multi-target combination therapy: regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv. 25(1), 321–329 (2018).
    • 15 An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7(15), 3667–3689 (2017).
    • 16 Battogtokh G, Gotov O, Kang JH et al. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine (Lond.) 13(3), 325–338 (2018).
    • 17 Wang C, Zhang C, Li Z et al. Extending half-life of H-ferritin nanoparticle by fusing albumin binding domain for doxorubicin encapsulation. Biomacromolecules 19(3), 773–781 (2018).
    • 18 Norouzi P, Amini M, Mottaghitalab F et al. Design and fabrication of dual-targeted delivery system based on gemcitabine conjugated human serum albumin nanoparticles. Chem. Biol. Drug Des. doi:10.1111/cbdd.13044 (2017) (Epub ahead of print).
    • 19 Nosrati H, Sefidi N, Sharafi A et al. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem. 76, 501–509 (2018).
    • 20 Edelman R, Assaraf YG, Levitzky I et al. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget 8(15), 24337–24353 (2017).