We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells

    Liliana Silva

    Escola Internacional de Doutoramento (EIDO), Universidade de Vigo, Espanha

    Centro de Investigação em Saúde Ambiental (CISA), Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    ,
    Pedro Coelho

    Centro de Investigação em Saúde Ambiental (CISA), Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    Ciências Químicas e das Biomoléculas, Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal

    i3S, Instituto de Inovação e Investigação em Saúde da Universidade do Porto, Porto, Portugal

    ,
    Raquel Soares

    Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal

    i3S, Instituto de Inovação e Investigação em Saúde da Universidade do Porto, Porto, Portugal

    ,
    Cristina Prudêncio

    Centro de Investigação em Saúde Ambiental (CISA), Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    Ciências Químicas e das Biomoléculas, Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    i3S, Instituto de Inovação e Investigação em Saúde da Universidade do Porto, Porto, Portugal

    &
    Mónica Vieira

    *Author for correspondence: Tel.: +351 222 061 000;

    E-mail Address: mav@ess.ipp.pt

    Centro de Investigação em Saúde Ambiental (CISA), Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    Ciências Químicas e das Biomoléculas, Escola Superior de Saúde do Porto, Politécnico do Porto, Porto, Portugal

    i3S, Instituto de Inovação e Investigação em Saúde da Universidade do Porto, Porto, Portugal

    Published Online:https://doi.org/10.4155/fmc-2018-0251

    Aim: Quinoxaline-1,4-dioxide derivatives are synthetic heterocyclic compounds with multiple biological and pharmacological effects. In this study, we investigated the bioactivity of five quinoxaline-1,4-di-N-oxides derivatives in different animal cell lines. Materials & methods: Using in vitro cell cultures, we evaluated the influence of quinoxaline-1,4-dioxide, 2-methylquinoxaline-1,4-dioxide, 2-amino-3-cyanoquinoxaline-1,4-dioxide, 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide and 2-hydroxyphenazine-N,N-dioxide (2HF) in the viability, migration and proliferation of nonmalignant (3T3-L1 and human dermal microvascular endothelial cell) and malignant (B16-F10, MeWo, GL-261 and BC3H1) cell lines. Results: The viability IC50 concentrations for each quinoxaline-1,4-di-N-oxide derivative were calculated, and a concomitant reduction of migration and proliferation was observed mainly in malignant cell lines. Conclusion: 2HF exhibited potent anti-viability, anti-migration and anti-proliferative actions selectively in tumor cells, nevertheless more studies are required to further investigate 2HF promising biologic effects.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Pereira JA, Pessoa AM, Cordeiro MNDS et al. Quinoxaline, its derivatives and applications: a state of the art review. Eur. J. Med. Chem. 97, 664–672 (2015). • Review on the biological effects and pharmacological applications of quinoxalines.
    • 2 Cheng G, Sa W, Cao C et al. Quinoxaline 1,4-di-N-oxides: biological activities and mechanisms of actions. Front. Pharmacol. 7(MAR), 64 (2016).
    • 3 Vicente E, Villar R, Pérez-Silanes S, Aldana I, Goldman RC, Mong A. Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis. Infect. Disord. Drug Targets 11(2), 196–204 (2011).
    • 4 Huang XJ, Zhang HH, Wang X et al. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro. Chem. Biol. Interact. 185(3), 227–234 (2010).
    • 5 Vieira M, Pinheiro C, Fernandes R, Noronha JP, Prudêncio C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol. Res. 169(4), 287–293 (2014). •• Describes the antimicrobial activity of the quinoxaline-1,4-dioxide derivatives used in this study.
    • 6 Santivañez-Veliz M, Pérez-Silanes S, Torres E, Moreno-Viguri E. Design and synthesis of novel quinoxaline derivatives as potential candidates for treatment of multidrug-resistant and latent tuberculosis. Bioorg. Med. Chem. Lett. 26(9), 2188–2193 (2016).
    • 7 Al-Marhabi A, Abbas H-A, Ammar Y. Synthesis, characterization and biological evaluation of some quinoxaline derivatives: a promising and potent new class of antitumor and antimicrobial agents. Molecules 20(11), 19805–19822 (2015).
    • 8 Gu W, Wang S, Jin X et al. Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents. Molecules 22(7), 1154 (2017). •• Reviews/reports on the anticancer activity of quinoxaline derivatives.
    • 9 Patel NB, Patel JN, Purohit AC et al. In vitro and in vivo assessment of newer quinoxaline–oxadiazole hybrids as antimicrobial and antiprotozoal agents. Int. J. Antimicrob. Agents 50(3), 413–418 (2017).
    • 10 Miller E, Xia Q, Cella M et al. Voltammetric study of some 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives with anti-tumor activities. Molecules 22(9), 1442 (2017).
    • 11 Tariq S, Alam O, Amir M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg. Chem. 76, 343–358 (2018).
    • 12 Marzano C, Pellei M, Tisato F, Santini C. Anti-cancer agents in medicinal chemistry. Anticancer Agents Med. Chem. 9(2), 185–211 (2009). •• Reviews/reports on the anticancer activity of quinoxaline derivatives.
    • 13 Liu Z-Y, Sun Z-L. The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: an overview. Med. Chem. 9(8), 1017–1027 (2013). •• Reviews/reports on the anticancer activity of quinoxaline derivatives.
    • 14 El Aissi R, Liu J, Besse S et al. Synthesis and biological evaluation of new quinoxaline derivatives of ICF01012 as melanoma-targeting probes. ACS Med. Chem. Lett. 5(5), 468–473 (2014).
    • 15 Mielcke TR, Mascarello A, Filippi-Chiela E et al. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur. J. Med. Chem. 48, 255–264 (2012).
    • 16 Abbas H-AS, Al-Marhabi AR, Eissa SI, Ammar YA. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase. Bioorg. Med. Chem. 23(20), 6560–6572 (2015).
    • 17 Gao H, Wang D, Zhang S et al. Roles of ROS mediated oxidative stress and DNA damage in 3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide-induced immunotoxicity of Sprague–Dawley rats. Regul. Toxicol. Pharmacol. 73(2), 587–594 (2014).
    • 18 Ahmed HEA, Ihmaid SK, Omar AM et al. Design, synthesis, molecular docking of new lipophilic acetamide derivatives affording potential anticancer and antimicrobial agents. Bioorg. Chem. 76, 332–342 (2018).
    • 19 Guo W, Hao H, Dai M et al. Development of quinoxaline 1, 4-dioxides resistance in escherichia coli and molecular change under resistance selection. PLoS ONE 7(8), e43322 (2012).
    • 20 Pettersen EO, Ebbesen P, Gieling RG et al. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: The METOXIA Consortium. J. Enzyme Inhib. Med. Chem. 30(5), 689–721 (2015).
    • 21 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–74 (2011).
    • 22 Xu XD, Shao SX, Jiang HP et al. Warburg effect or reverse warburg effect? A review of cancer metabolism. Oncol. Res. Treat. 38(3), 117–122 (2015).
    • 23 Mantovani A. Cancer: inflaming metastasis. Nature 457(7225), 36–37 (2009).
    • 24 Ramli Y, Moussaif A, Karrouchi K, Essassi EM. Pharmacological profile of quinoxalinone. J. Chem. 2014(563406), 1–21 (2014).
    • 25 Husain A, Madhesia D. Recent advances in pharmacological activities of quinoxaline derivatives. J. Pharm. Res. 4(3), 924–929 (2011).
    • 26 Zhang M, Dai ZC, Qian SS et al. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. J. Agric. Food Chem. 62(40), 9637–9643 (2014).
    • 27 Moarbess G, Deleuze-Masquefa C, Bonnard V et al. In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives. Bioorganic Med. Chem. 16(13), 6601–6610 (2008).
    • 28 Tseng C-H, Chen Y-R, Tzeng C-C et al. Discovery of indeno[1,2- b ]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem. 108, 258–273 (2016).
    • 29 Deleuze-Masquefa C, Moarbess G, Khier S et al. New imidazo[1,2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma. Eur. J. Med. Chem. 44(9), 3406–3411 (2009).
    • 30 Khier S, Deleuze-Masquéfa C, Moarbess G et al. Pharmacology of EAPB0203, a novel imidazo[1,2-a]quinoxaline derivative with anti-tumoral activity on melanoma. Eur. J. Pharm. Sci. 39(1–3), 23–29 (2010).
    • 31 Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.) 3, 83–92 (2015).
    • 32 Junnotula V, Sarkar U, Sinha S, Gates KS. Initiation of DNA strand cleavage by 1,2,4-benzotriazine 1,4-dioxide antitumor agents: mechanistic insight from studies of 3-methyl-1,2,4-benzotriazine 1,4-dioxide. J. Am. Chem. Soc. 131(3), 1015–1024 (2009).
    • 33 Garbe C, Peris K, Hauschild A et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline – update 2016. Eur. J. Cancer 63(2), 201–217 (2016).
    • 34 Vartanian A, Baryshnikova M, Burova O et al. Inhibitor of vasculogenic mimicry restores sensitivity of resistant melanoma cells to DNA-damaging agents. Melanoma Res. 27(1), 8–16 (2017).
    • 35 Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin. Cancer Res. 15(2), 425–430 (2009).
    • 36 Hugo W, Zaretsky JM, Sun L et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1), 35–44 (2016).
    • 37 Urosevic-Maiwald M, Barysch MJ, Cheng PF et al. In vivo profiling reveals immunomodulatory effects of sorafenib and dacarbazine on melanoma. Oncoimmunology 4(2), e988458 (2015).