We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Developing RNA aptamers for potential treatment of neurological diseases

    Zhen Huang

    Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY 12222, USA

    &
    Li Niu

    *Author for correspondence:

    E-mail Address: lniu@albany.edu

    Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY 12222, USA

    Published Online:https://doi.org/10.4155/fmc-2018-0364

    AMPA receptor antagonists are drug candidates for potential treatment of a number of CNS diseases that involve excessive receptor activation. To date, small-molecule compounds are the dominating drug candidates in the field. However, lower potency, cross activity and poor water solubility are generally associated with these compounds. Here we show the potential of RNA-based antagonists or RNA aptamers as drug candidates and some strategies to discover these aptamers from a random sequence library (∼1014 sequences). As an alternative to small molecule compounds, our aptamers exhibit higher potency and selectivity toward AMPA receptors. Because aptamers are RNA molecules, they are naturally water soluble. We also discuss the major challenges of translating RNA aptamers as lead molecules into drugs/treatment options.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Craig PN. Proceedings: Comparison of Hansch and Free–Wilson methods for structure–activity correlation. Cancer Chemother. Rep. 4(4), 39 (1974).
    • 2 Anderson AC. The process of structure-based drug design. Chem. Biol. 10(9), 787–797 (2003). • A general approach for using structure-based drug design is presented.
    • 3 Bajorath J. Computer-aided drug discovery. F1000Res 4, doi:10.12688/f1000research.6653.1 (2015). • A general approach for using computer-aided, computational chemistry in drug design is presented.
    • 4 Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Lindsley CW. Application of combinatorial chemistry science on modern drug discovery. J. Comb. Chem. 10(3), 345–354 (2008).
    • 5 Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).
    • 6 Franzini RM, Neri D, Scheuermann J. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc. Chem. Res. 47(4), 1247–1255 (2014).
    • 7 Shoichet BK. Virtual screening of chemical libraries. Nature 432(7019), 862–865 (2004). • This is a comprehensive review in the use of virtual screening in drug discovery.
    • 8 Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004).
    • 9 Ruddigkeit L, Van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52(11), 2864–2875 (2012).
    • 10 Reymond JL. The chemical space project. Acc. Chem. Res. 48(3), 722–730 (2015).
    • 11 Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 15(8), 533–550 (2016).
    • 12 Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science 287(5454), 820–825 (2000).
    • 13 Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818–822 (1990). • This is one of the two original studies in the development of SELEX to isolate useful RNA aptamers; the second study is reference 20.
    • 14 Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990). • This is second, original report in the development of SELEX to isolate useful RNA aptamers; the first paper is reference 19.
    • 15 Huang Z, Pei W, Jayaseelan S, Shi H, Niu L. RNA aptamers selected against the GluR2 glutamate receptor channel. Biochemistry 46(44), 12648–12655 (2007).
    • 16 Kahsai AW, Wisler JW, Lee J et al. Conformationally selective RNA aptamers allosterically modulate the beta2-adrenoceptor. Nat. Chem. Biol. 12(9), 709–716 (2016).
    • 17 Rajendran M, Ellington AD. Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal. Bioanal. Chem. 390(4), 1067–1075 (2008).
    • 18 Ciesiolka J, Yarus M. Small RNA-divalent domains. RNA 2(8), 785–793 (1996).
    • 19 Shangguan D, Li Y, Tang Z et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl Acad. Sci. USA 103(32), 11838–11843 (2006).
    • 20 Gopinath SC, Hayashi K, Kumar PK. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J. Virol. 86(12), 6732–6744 (2012).
    • 21 Cnossen EJ, Silva AG, Marangoni K et al. Characterization of oligonucleotide aptamers targeting the 5’-UTR from dengue virus. Future Med. Chem. 9(6), 541–552 (2017).
    • 22 Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9(7), 537–550 (2010).
    • 23 Huang Z, Pei W, Han Y et al. One RNA aptamer sequence, two structures: a collaborating pair that inhibits AMPA receptors. Nucleic Acids Res. 37(12), 4022–4032 (2009). •• RNA aptamers that share the same length and the sequence, transcribed from the same DNA template in the same transcription reaction, can have different functions by binding to different sites. They act, as a collaborating pair, to competitively inhibit AMPA receptors.
    • 24 Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).
    • 25 Bornberg-Bauer E. How are model protein structures distributed in sequence space? Biophys. J. 73(5), 2393–2403 (1997).
    • 26 Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl Acad. Sci. USA 93(1), 397–401 (1996).
    • 27 Schultes EA, Bartel DP. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289(5478), 448–452 (2000).
    • 28 Spiegelman S. An approach to the experimental analysis of precellular evolution. Q Rev. Biophys. 4(2), 213–253 (1971).
    • 29 Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol. Rev. 51(1), 7–61 (1999).
    • 30 Solyom S, Tarnawa I. Non-competitive AMPA antagonists of 2,3-benzodiazepine type. Curr. Pharm. Des. 8(10), 913–939 (2002).
    • 31 Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl Acad. Sci. USA 102(34), 12230–12235 (2005).
    • 32 Conrad KL, Tseng KY, Uejima JL et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454(7200), 118–121 (2008).
    • 33 Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol. Scand. Suppl. 197, 19–24 (2013).
    • 34 Zappala M, Grasso S, Micale N, Polimeni S, De Micheli C. Synthesis and structure–activity relationships of 2,3-benzodiazepines as AMPA receptor antagonists. Mini. Rev. Med. Chem. 1(3), 243–253 (2001).
    • 35 Gorter JA, Petrozzino JJ, Aronica EM et al. Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 17(16), 6179–6188 (1997).
    • 36 Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S. Glutamate receptors: RNA editing and death of motor neurons. Nature. 427(6977), 801 (2004).
    • 37 Newcombe J, Uddin A, Dove R et al. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol. 18(1), 52–61 (2008).
    • 38 Honore T, Davies SN, Drejer J et al. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241(4866), 701–703 (1988).
    • 39 Armstrong N, Gouaux E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28(1), 165–181 (2000). • Reports the first crystal structure for a partial AMPA receptor.
    • 40 Topliss JG. Utilization of operational schemes for analog synthesis in drug design. J. Med. Chem. 15(10), 1006–1011 (1972).
    • 41 Bausch-Fluck D, Hofmann A, Bock T et al. A mass spectrometric-derived cell surface protein atlas. PLoS ONE. 10(3), e0121314 (2015).
    • 42 Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22(11), 1393–1398 (2004).
    • 43 Jordan M, Schallhorn A, Wurm FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium–phosphate precipitate formation. Nucleic Acids Res. 24(4), 596–601 (1996).
    • 44 Chen C, Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7(8), 2745–2752 (1987).
    • 45 Park JS, Wang C, Han Y, Huang Z, Niu L. Potent and selective inhibition of a single alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit by an RNA aptamer. J. Biol. Chem. 286(17), 15608–15617 (2011). •• Discovery of a single subunti-selective RNA aptamer was described.
    • 46 Huang Z, Han Y, Wang C, Niu L. Potent and selective inhibition of the open-channel conformation of AMPA receptors by an RNA aptamer. Biochemistry 49(27), 5790–5798 (2010). •• An RNA aptamer selective to a particular conformation of AMPA receptors can be isolated.
    • 47 Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. One aptamer, two functions: the full-length aptamer inhibits AMPA receptors, while the short one inhibits both AMPA and kainate receptors. RNA Dis. 4(2), e1560 (2017).
    • 48 Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: a long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J. Biol. Chem. 292(18), 7338–7347 (2017).
    • 49 Topliss JG. A manual method for applying the Hansch approach to drug design. J. Med. Chem. 20(4), 463–469 (1977).
    • 50 Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 35(4), 575–588 (2016).
    • 51 Charbonnier LM, Janssen E, Chou J et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J. Allergy Clin. Immunol. 135(1), 217–227 (2015).
    • 52 Villar-Cheda B, Dominguez-Meijide A, Valenzuela R, Granado N, Moratalla R, Labandeira-Garcia JL. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol. Aging 35(7), 1726–1738 (2014).
    • 53 Gashaw I, Ellinghaus P, Sommer A, Asadullah K. What makes a good drug target? Drug Discov. Today 17(Suppl.), S24–30 (2012).
    • 54 Hendrickson WA. Atomic-level analysis of membrane-protein structure. Nat. Struct. Mol. Biol. 23(6), 464–467 (2016).
    • 55 Wallin E, Von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7(4), 1029–1038 (1998).
    • 56 Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat. Rev. Drug Discov. 5(12), 993–996 (2006).
    • 57 Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395(6705), 913–917 (1998).
    • 58 Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6(8), 803–810 (2003).
    • 59 Li G, Pei W, Niu L. Channel-opening kinetics of GluR2Q(flip) AMPA receptor: a laser-pulse photolysis study. Biochemistry 42(42), 12358–12366 (2003).
    • 60 Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428(6980), 281–286 (2004).
    • 61 Goodsell DS, Olson AJ. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).
    • 62 Que-Gewirth NS, Sullenger BA. Gene therapy progress and prospects: RNA aptamers. Gene Ther. 14(4), 283–291 (2007).
    • 63 Fauman EB, Rai BK, Huang ES. Structure-based druggability assessment – identifying suitable targets for small molecule therapeutics. Curr. Opin. Chem. Biol. 15(4), 463–468 (2011).
    • 64 Blind M, Blank M. Aptamer Selection technology and recent advances. Mol. Ther. Nucleic Acids 4, e223 (2015).
    • 65 Hogan JC Jr Combinatorial chemistry in drug discovery. Nat. Biotechnol. 15(4), 328–330 (1997).
    • 66 Dolle RE. Historical overview of chemical library design. Methods Mol. Biol. 685, 3–25 (2011).
    • 67 Scheuermann J, Neri D. DNA-encoded chemical libraries: a tool for drug discovery and for chemical biology. Chembiochem 11(7), 931–937 (2010).
    • 68 Neri D, Lerner RA. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Annu. Rev. Biochem. 87, 479–502 (2018).
    • 69 Sanger F. Sequences, sequences, and sequences. Annu. Rev. Biochem. 57, 1–28 (1988).
    • 70 Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin. Biochem. Rev. 32(4), 177–195 (2011).
    • 71 Joachimiak A. High-throughput crystallography for structural genomics. Curr. Opin. Struct. Biol. 19(5), 573–584 (2009).
    • 72 Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77(12), 7380–7384 (1980).
    • 73 Ziegler A, Koch A, Krockenberger K, Grosshennig A. Personalized medicine using DNA biomarkers: a review. Hum. Genet. 131(10), 1627–1638 (2012).
    • 74 Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11(3), 191–200 (2012).
    • 75 Lieberman J. Tapping the RNA world for therapeutics. Nat. Struct. Mol. Biol. 25(5), 357–364 (2018).
    • 76 Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv. Drug Deliv. Rev. 134, 22–35 (2018).
    • 77 Morrissey DV, Lockridge JA, Shaw L et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23(8), 1002–1007 (2005).
    • 78 Healy JM, Lewis SD, Kurz M et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21(12), 2234–2246 (2004).
    • 79 Gomes De Castro MA, Hobartner C, Opazo F. Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy. PLoS ONE 12(2), e0173050 (2017).
    • 80 Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. Kinetic characterization of ribonuclease-resistant 2’-modified hammerhead ribozymes. Science 253(5017), 314–317 (1991).
    • 81 Sawadogo M, Roeder RG. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc. Natl Acad. Sci. USA 82(13), 4394–4398 (1985).
    • 82 Cummins LL, Owens SR, Risen LM et al. Characterization of fully 2’-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 23(11), 2019–2024 (1995).
    • 83 Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. J. Biotechnol. 74(1), 5–13 (2000).
    • 84 Dass CR, Saravolac EG, Li Y, Sun LQ. Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucleic Acid Drug Dev. 12(5), 289–299 (2002).
    • 85 Heidenreich O, Pieken W, Eckstein F. Chemically modified RNA: approaches and applications. Faseb J. 7(1), 90–96 (1993).
    • 86 Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 5(2), 123–132 (2006).
    • 87 Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW. Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J. Chromatogr. B. Biomed. Sci. Appl. 732(1), 203–212 (1999).
    • 88 Huang Z, Wen W, Wu A, Niu L. Chemically modified, alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor RNA aptamers designed for in vivo use. ACS Chem. Neurosci. 8(11), 2437–2445 (2017). •• Making chemically modified RNA aptamers by enzymatic transcription reaction is presented; these RNA aptamers are sufficiently stable to be used in vivo.
    • 89 Cazenave C, Uhlenbeck OC. RNA template-directed RNA synthesis by T7 RNA polymerase. Proc. Natl Acad. Sci. USA 91(15), 6972–6976 (1994).
    • 90 Ruckman J, Green LS, Beeson J et al. 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273(32), 20556–20567 (1998).
    • 91 Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17(6), 1031–1036 (1976).
    • 92 Bustamante D, Paeile C, Willer JC, Le Bars D. Effects of intrathecal or intracerebroventricular administration of nonsteroidal anti-inflammatory drugs on a C-fiber reflex in rats. J. Pharmacol. Exp. Ther. 281(3), 1381–1391 (1997).
    • 93 Luo MC, Zhang DQ, Ma SW et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol. Pain 1, 29 (2005).
    • 94 Storkebaum E, Lambrechts D, Dewerchin M et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8(1), 85–92 (2005).
    • 95 Staquet H, Dupoiron D, Nader E, Menei P. Intracerebroventricular pain treatment with analgesic mixtures including ziconotide for intractable pain. Pain Phys. 19(6), E905–E915 (2016).
    • 96 Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat. Rev. Drug Discov. 14(12), 815–816 (2015).
    • 97 Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6(7), 521–532 (2007).
    • 98 Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE. Improving and accelerating drug development for nervous system disorders. Neuron 84(3), 546–553 (2014).
    • 99 Santos R, Ursu O, Gaulton A et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16(1), 19–34 (2017).
    • 100 Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014).