We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends

    Edoardo Fabini

    Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, via Belmeloro 6, 40126 Bologna, Italy

    ,
    Elisabetta Manoni

    Institute for Organic Syntheses & Photoreactivity (ISOF), Italian National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy

    ,
    Claudia Ferroni

    Institute for Organic Syntheses & Photoreactivity (ISOF), Italian National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy

    ,
    Alberto Del Rio

    Institute for Organic Syntheses & Photoreactivity (ISOF), Italian National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy

    &
    Manuela Bartolini

    *Author for correspondence: Tel.: +39 0512099704; Fax: +39 0512099734;

    E-mail Address: manuela.bartolini3@unibo.it

    Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, via Belmeloro 6, 40126 Bologna, Italy

    Published Online:https://doi.org/10.4155/fmc-2018-0380

    Lysine methyltransferases SMYD2 and SMYD3 are involved in the epigenetic regulation of cell differentiation and functioning. Overexpression and deregulation of these enzymes have been correlated to the insurgence and progression of different tumors, making them promising molecular targets in cancer therapy even if their role in tumors is not yet fully understood. In this light, selective small-molecule inhibitors are required to fully understand and validate these enzymes, as this is a prerequisite for the development of successful targeted therapeutic strategies. The present review gives a systematic overview of the chemical probes developed to selectively target SMYD2 and SMYD3, with particular focus on the structural features important for high inhibitory activity, on the mode of inhibition and on the efficacy in cell-based and in in vivo models.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Boriack-Sjodin PA, Swinger KK. Protein methyltransferases: a distinct, diverse, and dynamic family of enzymes. Biochemistry 55(11), 1557–1569 (2016).
    • 2. Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 8(9), 724–732 (2009).
    • 3. Copeland RA. Molecular pathways: protein methyltransferases in cancer. Clin. Cancer Res. 19(23), 6344–6350 (2013).
    • 4. Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer. 15(2), 110–124 (2015).
    • 5. Copeland RA. Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery. Philos. Trans. R. Soc. B Biol. Sci. 373(1748), pii:20170080 (2018). •• Exhaustive review on methyltransferase enzymes as therapeutics targets in targeted cancer therapy.
    • 6. Copeland RA. Epigenetic medicinal chemistry. ACS Med. Chem. Lett. 7(2), 124–127 (2016).
    • 7. Leinhart K, Brown M. SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes (Basel) 2(1), 210–218 (2011).
    • 8. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int. J. Mol. Sci. 16(1), 1406–1408 (2015).
    • 9. Komatsu S, Imoto I, Tsuda H et al.Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis 30(7), 1139–1146 (2009).
    • 10. Cho H-S, Hayami S, Toyokawa G et al.RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14(6), 476–478 (2012).
    • 11. Reynoird N, Mazur PK, Stellfeld T et al.Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30(7), 772–785 (2016).
    • 12. Li LX, Zhou JX, Calvet JP, Godwin AK, Jensen RA, Li X. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 9(3), 326 (2018).
    • 13. Cock-Rada AM, Medjkane S, Janski N et al.SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res. 72(3), 810–820 (2012).
    • 14. Hamamoto R, Furukawa Y, Morita M et al.SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6(8), 731–740 (2004).
    • 15. Dong SW, Zhang H, Wang BL, Sun P, Wang YG, Zhang P. Effect of the downregulation of SMYD3 expression by RNAi on RIZ1 expression and proliferation of esophageal squamous cell carcinoma. Oncol. Rep. 32(3), 1064–1070 (2014).
    • 16. Wang L, Wang Q-T, Liu Y-P et al.ATM signaling pathway is implicated in the SMYD3-mediated proliferation and migration of gastric cancer cells. J. Gastric Cancer 17(4), 295 (2017).
    • 17. McGrath J, Trojer P. Targeting histone lysine methylation in cancer. Pharmacol. Ther. 150, 1–22 (2015).
    • 18. Rajajeyabalachandran G, Kumar S, Murugesan T et al.Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin. Ther. Targets 21(2), 145–157 (2017).
    • 19. Copeland RA, Moyer MP, Richon VM. Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics. Oncogene 32(8), 939–946 (2013).
    • 20. Thomenius MJ, Totman J, Harvey D et al.Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. PLoS ONE 13(6), e0197372 (2018). •• The work presents the most potent inhibitors of either SMYD2 or SMYD3 so-far discovered.
    • 21. Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. Smyd3 is a transcriptional potentiator of multiple cancer-promoting genes and required for liver and colon cancer development. Cancer Cell 29(3), 354–366 (2016).
    • 22. Abu-Farha M, Lambert J-P, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D. The tale of two domains. Mol. Cell. Proteomics 7(3), 560–572 (2008).
    • 23. Spellmon N, Sun X, Sirinupong N, Edwards B, Li C, Yang Z. Molecular dynamics simulation reveals correlated inter-lobe motion in protein lysine methyltransferase SMYD2. PLoS ONE 10(12), 1–10 (2015).
    • 24. Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci. 38(12), 621–639 (2013).
    • 25. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem. Sci. 32(2), 63–70 (2007).
    • 26. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11), 932–939 (1999).
    • 27. Cowen SD, Russell D, Dakin LA et al.Design, synthesis, and biological activity of substrate competitive SMYD2 inhibitors. J. Med. Chem. 59(24), 11079–11097 (2016).
    • 28. Fu W, Liu N, Qiao Q et al.Structural basis for substrate preference of SMYD3, a SET domain-containing protein lysine methyltransferase. J. Biol. Chem. 291(17), 9173–9180 (2016). • A key study on structural requirement for substrate preference.
    • 29. Huang J, Perez-Burgos L, Placek BJ et al.Repression of p53 activity by Smyd2-mediated methylation. Nature 444(7119), 629–632 (2006).
    • 30. Saddic LA, West LE, Aslanian A et al.Methylation of the retinoblastoma tumor suppressor by SMYD2. J. Biol. Chem. 285(48), 37733–37740 (2010).
    • 31. Jiang Y, Trescott L, Holcomb J et al.Structural insights into estrogen receptor α methylation by histone methyltransferase SMYD2, a cellular event implicated in estrogen signaling regulation. J. Mol. Biol. 426(20), 3413–3425 (2014). • Discloses the crystal structure of SMYD2 in complex with ERα.
    • 32. van Aller GS, Reynoird N, Barbash O et al.Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7(4), 340–343 (2012).
    • 33. Yoshioka Y, Suzuki T, Matsuo Y et al.SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget 7, 75023–75037 (2016).
    • 34. Mazur PK, Reynoird N, Khatri P et al.SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510(7504), 283–287 (2014).
    • 35. Kunizaki M, Hamamoto R, Silva FP et al.The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer Res. 67(22), 10759–10765 (2007).
    • 36. Foreman KW, Brown M, Park F et al.Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS ONE 6(7), e22290 (2011).
    • 37. Ferguson AD, Larsen NA, Howard T et al.Structural basis of substrate methylation and inhibition of SMYD2. Structure 19(9), 1262–1273 (2011). • Discloses the first crystal structure of SMYD2 in complex with the first identified inhibitor.
    • 38. Wang L, Li N, Zhang H et al.Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation. J. Biol. Chem. 286(44), 38725–38737 (2011).
    • 39. Chandramouli B, Silvestri V, Scarno M, Ottini L, Chillemi G. Smyd3 open & closed lock mechanism for substrate recruitment: the hinge motion of C-terminal domain inferred from μ-second molecular dynamics simulations. Biochim. Biophys. Acta 1860(7), 1466–1474 (2016).
    • 40. Chandramouli B, Chillemi G. Conformational dynamics of lysine methyltransferase Smyd2. Insights into the different substrate crevice characteristics of SMYD2 and SMYD3. J. Chem. Inf. Model. 56(12), 2467–2475 (2016).
    • 41. Sirinupong N, Brunzelle J, Doko E, Yang Z. Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. J. Mol. Biol. 406(1), 149–159 (2011).
    • 42. Brown MA, Foreman K, Harriss J et al.C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 6(6), 4005–4019 (2015).
    • 43. Nguyen H, Allali-Hassani A, Antonysamy S et al.LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2. J. Biol. Chem. 290(22), 13641–13653 (2015).
    • 44. Sweis RF, Wang Z, Algire M et al.Discovery of A-893, a new cell-active benzoxazinone inhibitor of lysine methyltransferase SMYD2. ACS Med. Chem. Lett. 6, 695–700 (2015). • Reports on an extensive and systematic structure–activity relationship study on structural features for SMYD2 inhibition starting from AZ505 scaffold.
    • 45. Eggert E, Hillig RC, Koehr S et al.Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J. Med. Chem. 59(10), 4578–4600 (2016).
    • 46. Fabian MA, Biggs WH, Treiber DK et al.A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23(3), 329–336 (2005).
    • 47. Peserico A, Germani A, Sanese P et al.A SMYD3 small-molecule inhibitor impairing cancer cell growth. J. Cell. Physiol. 230(10), 2447–2460 (2015).
    • 48. Del Rio A, Barbosa AJM, Caporuscio F, Mangiatordi GF. CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol. Biosyst. 6(11), 2122–2128 (2010).
    • 49. Giannetti AM. From eperimental design to validated hits: a comprehensive walk-through of fragment lead identification using surface plasmon resonance. Methods Enzymol. 493, 169–218 (2011).
    • 50. Van Aller GS, Graves AP, Elkins PA et al.Structure-based design of a novel SMYD3 inhibitor that bridges the SAM-and MEKK2-binding pockets. Structure 24(5), 774–781 (2016).
    • 51. Yu W, Smil D, Li F et al.Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Bioorganic Med. Chem. 21(7), 1787–1794 (2013).
    • 52. Basavapathruni A, Jin L, Daigle SR et al.Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem. Biol. Drug Des. 80(6), 971–980 (2012).
    • 53. Mitchell LH, Boriack-Sjodin PA, Smith S et al.Novel oxindole sulfonamides and sulfamides: EPZ031686, the first orally bioavailable small molecule SMYD3 inhibitor. ACS Med. Chem. Lett. 7(2), 134–138 (2016). • Discloses the first crystal structure an inhibitor targeting the substrate-binding site of SMYD3.
    • 54. Jafari R, Almqvist H, Axelsson H et al.The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9(9), 2100–2122 (2014).
    • 55. Structural Genomics Consortium BAY-6035 A potent, peptide-competitive chemical probe for SMYD3 https://www.thesgc.org/chemical-probes/BAY-6035
    • 56. Andreoli F, Barbosa AJM, Parenti MD, Del Rio A. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr. Pharm. Des. 19(4), 578–613 (2012).
    • 57. Andreoli F, Del Rio A. Computer-aided molecular design of compounds targeting histone modifying enzymes. Comput. Struct. Biotechnol. J. 13, 358–365 (2015).
    • 58. Fenizia C, Bottino C, Corbetta S et al.SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res. 1221 (2018) (In Press).