We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Neurotensins and their therapeutic potential: research field study

Andy Wai Kan Yeung

*Author for correspondence:

E-mail Address: ndyeung@hku.hk

Oral & Maxillofacial Radiology, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China

,
Maya G Georgieva

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

,
Kiril Kirilov

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

,
Aneliya A Balacheva

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

,
Martina I Peeva

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

,
Olaf K Horbańczuk

Division of Engineering in Nutrition, Department of Technique & Food Product Development, Warsaw University of Life Sciences (WULS-SGGW) 159c Nowoursynowska, 02-776 Warsaw, Poland

,
Jarosław O Horbańczuk

The Institute of Genetics & Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland

,
Massimo Lucarini

CREA-Research Centre for Food & Nutrition, Via Ardeatina 546, 00178, Rome, Italy

,
Alessandra Durazzo

CREA-Research Centre for Food & Nutrition, Via Ardeatina 546, 00178, Rome, Italy

,
Antonello Santini

Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy

,
Eliana B Souto

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal

CEB – Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057, Braga, Portugal

,
Tamara I Pajpanova

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

,
Luigi Milella

Department of Science, Universitá degli Studi della Basilicata, V.le Ateneo Lucano 10, 85100, Potenza, Italy

Spinoff BioActiPlant S.R.L. Department of Science, University of Basilicata, V.le dell'Ateneo lucano, 10, 85100, Potenza, Italy

,
Atanas G Atanasov

**Author for correspondence:

E-mail Address: a.atanasov.mailbox@gmail.com

The Institute of Genetics & Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland

Department of Pharmacognosy, University of Vienna, Vienna, Austria

Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Ludwig Boltzmann Institute for Digital Health & Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria

&
Nikolay T Tzvetkov

***Author for correspondence:

E-mail Address: ntzvetkov@gmx.de

Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology & Drug Design, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

Published Online:https://doi.org/10.4155/fmc-2020-0124

The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.

Graphical abstract

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Araki K, Tachibana S, Uchiyama M, Nakajima T, Yasuhara T. Isolation and structure of a new active peptide “Xenopsin” on the smooth muscle, especially on a strip of fundus from a rat stomach, from the skin of Xenopus laevis. Chem. Pharm. Bull. 21(12), 2801–2804 (1973). •• Describes the isolation of xenopsin.
  • 2. Carraway R, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248(19), 6854–6861 (1973). •• First describes the isolation of neurotensin.
  • 3. Doulut S, Rodriguez M, Lugrin D et al. Reduced peptide bond pseudopeptide analogues of neurotensin. Pept. Res. 5(1), 30–38 (1992).
  • 4. Minamino N, Kangawa K, Matsuo H. Neuromedin N: a novel neurotensin-like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 122(2), 542–549 (1984). •• Describes the isolation and identification of neuromedin N.
  • 5. Feurle GE. Xenin – a review. Peptides 19(3), 609–615 (1998).
  • 6. Vincent J-P, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 20(7), 302–309 (1999).
  • 7. Wu Z, Martinez-Fong D, Trédaniel J, Forgez P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol. 3, 184 (2013).
  • 8. Nemeroff CB, Osbahr AJ, Manberg PJ, Ervin GN, Prange AJ. Alterations in nociception and body temperature after intracisternal administration of neurotensin, beta-endorphin, other endogenous peptides, and morphine. Proc. Natl Acad. Sci. USA 76(10), 5368–5371 (1979).
  • 9. Dubuc I, Costentin J, Doulut S, Rodriguez M, Martinez J, Kitabgi P. JMV 449: a pseudopeptide analogue of neurotensin-(8–13) with highly potent and long-lasting hypothermic and analgesic effects in the mouse. Eur. J. Pharmacol. 219(2), 327–329 (1992).
  • 10. Skoog KM, Cain S, Nemeroff C. Centrally administered neurotensin suppresses locomotor hyperactivity induced by d-amphetamine but not by scopolamine or caffeine. Neuropharmacology 25(7), 777–782 (1986).
  • 11. Carraway R, Leeman SE. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 250(5), 1907–1911 (1975). •• Presents a unique amino acid sequence for neurotensin and method for its isolation.
  • 12. Sefler AM, He JX, Sawyer TK et al. Design and structure-activity relationships of C-terminal cyclic neurotensin fragment analogs. J. Med. Chem. 38(2), 249–257 (1995).
  • 13. St-Pierre S, Lalonde J, Gendreau M, Quirion R, Regoli D, Rioux F. Synthesis of peptides by the solid-phase method. 6. Neurotensin, fragments, and analogs. J. Med. Chem. 24(4), 370–376 (1981).
  • 14. Fanelli R, Floquet N, Besserer-Offroy E et al. Use of molecular modeling to design selective NTS2 neurotensin analogues. J. Med. Chem. 60(8), 3303–3313 (2017).
  • 15. García-Garayoa E, Maes V, Bläuenstein P. et al. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl. Med. Biol. 33(4), 495–503 (2006).
  • 16. Schindler L, Bernhardt G, Keller M. Modifications at Arg and Ile give neurotensin (8–13) derivatives with high stability and retained NTS1 receptor affinity. ACS Med. Chem. Lett. 10(6), 960–965 (2019).
  • 17. Kitabgi P, De Nadai F, Rovère C, Bidard JN. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin N. Ann. NY Acad. Sci. 668(1), 30–42 (1992). • Describes the distribution of immunoreactiive neurotensin (iNT) and neuromedin N (iNN) in peripheral tissues.
  • 18. Checler F, Vincent J-P, Kitabgi P. Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J. Biol. Chem. 261(24), 11274–11281 (1986). •• First describes the purification and full characterization of a novel neurotensins (NT)-degrading enzyme named neurolysin.
  • 19. Mazella J, Botto J-M, Guillemare E, Coppola T, Sarret P, Vincent J-P. Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J. Neurosci. 16(18), 5613–5620 (1996).
  • 20. Mazella J, Zsürger N, Navarro V et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J. Biol. Chem. 273(41), 26273–26276 (1998).
  • 21. Vita N, Laurent P, Lefort S et al. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett. 317(1–2), 139–142 (1993).
  • 22. Sousbie M, Vivancos Ml, Brouillette RL et al. Structural optimization and characterization of potent analgesic macrocyclic analogues of neurotensin (8–13). J. Med. Chem. 61(16), 7103–7115 (2018).
  • 23. Kleczkowska P, Lipkowski AW. Neurotensin and neurotensin receptors: characteristic, structure–activity relationship and pain modulation – a review. Eur. J. Pharmacol. 716(1–3), 54–60 (2013).
  • 24. Mitra SP. Neurotensin and neurotensin receptors in health and diseases: a brief review. Indian J. Biochem. Bio. 54, 7–23 (2017).
  • 25. Sundler F, Håkanson R, Hammer RA et al. Immunohistochemical localization of neurotensin in endocrine cells of the gut. Cell Tissue Res. 178, 313–321 (1977).
  • 26. Ratner C, Skov LJ, Raida Z et al. Effects of peripheral neurotensin on appetite regulation and its role in gastric bypass surgery. Endocrinology 157(9), 3482–3492 (2016).
  • 27. Hammer RA, Carraway RE, Leeman SE. Elevation of plasma neurotensin – like immunoreactivity after meal. J. Clin. Invest. 70(1), 74–81 (1982).
  • 28. Fujimura MT, Sakamoto T, Khalil T, Greeley G, Townsend C, Thompson J. Physiological role of neurotensin in gall bladder contraction in dog. Surg. Forum 35, 192–194 (1994).
  • 29. Anderson S, Rosell S, Hjelenquist U, Chang D, Folkers K. Inhibition of gastric and intestinal motor activity in dogs by neurotensin. Acta Physiol. Scand. 100(2), 231–235 (1977).
  • 30. Degolier TF, Place AR, Duke GE, Carraway RE. Neurotensin modulates the composition of pancreatic exocrine secretion in chicken. J. Exp. Zool. 283(4–5), 455–462 (1999).
  • 31. Gui X, Carraway RE. Enhancement of jejunal absorption of conjugated bile acid by neurotensin in rats. Gastroentrology 120(1), 151–160 (2001).
  • 32. Anderson S, Rosell S, Hjelenquist U, Chang D, Folkers K. Inhibition of gastric and intestinal motor activity in dogs by neurotensin. Acta Physiol. Scand. 100(2), 231–235 (1977).
  • 33. Qui S, Pellino G, Fiorentino F et al. A review of the role on neurotensin and its receptors in colorectal cancer. Gastroent. Res. Pract. 2017, Art. ID 6456257, 8 (2017).
  • 34. Maoret JJ, Anini Y, Rouyer-Fessard C, Gully D, Laburthe M. Neurotensin and a nonpeptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int. J. Cancer 80(3), 448–454 (1999).
  • 35. Alshoukr F, Rosant C, Maes V et al. Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. Bioconjugate Chem. 20(8), 1602–1610 (2009).
  • 36. Wu Z, Li L, Liu S et al. Facile preparation of a thio-reactive (18)F-labeling agent and synthesis of (18)F-DEG-VS-NT for PET imaging of a neurotensin receptor-positive tumor. J. Nucl. Med. 55(7), 1178–1184 (2014).
  • 37. Garcia-Garayoa E, Blauenstein P, Blanc A, Maes V, Tourwe D, Schubinger PA. A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumors. Eur. J. Nucl. Med. Mol. I. 36(1), 37–47 (2009).
  • 38. Sgourakis G, Papapanagiotou A, Kontovounisios C et al. The combined use of serum neurotensin and IL-8 as screening markers for colorectal cancer. Tumor Biol. 35(6), 5993–6002 (2014).
  • 39. Levy A, Gal R, Granoth R, Dreznik Z, Fridkin M, Gozes I. In vitro and in vivo treatment of colon cancer by VIP antagonists. Regul. Pept. 109(1–3), 127–133 (2002).
  • 40. Iwase K, Evers BM, Hellmich MR et al. Indirect inhibitory effect of a neurotensin receptor antagonist on human colon cancer (LoVo) growth. Surg. Oncol. 5(5–6), 245–251 (1996).
  • 41. Liu J, Agopiantz M, Poupon J et al. Neurotensin receptor 1 antagonist SR-48692 improves response to carboplatin by enhancing apoptosis and inhibiting drug efflux in ovarian cancer. Clin. Cancer Res. 23(21), 6516–6528 (2017).
  • 42. Clineschmidt BV, McGuffin JC. Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur. J. Pharmacol. 46(4), 395–396 (1977).
  • 43. Clineschmidt BV, McGuffin JC, Bunting PB. Neurotensin: antinocisponsive action in rodents. Eur. J. Pharmacol. 54(1–2), 129–139 (1979).
  • 44. Binder EB, Kinkead B, Owens MJ, Nemeroff CB. Neurotensin and dopamine interactions. Pharmacol. Rev. 53(4), 453–486 (2001).
  • 45. Boules M, Shaw A, Liang Y, Barbut D, Richelson E. NT69L, a novel analgesic, shows synergy with morphine. Brain Res. 1294, 22–28 (2009).
  • 46. Dobner PR. Neurotensin and pain modulation. Peptides 27(10), 2405–2414 (2006).
  • 47. Boules M, Netz R, Fredrickson PA, Richelson E. A neurotensin analog blocks cocaine-conditioned place preference and reinstatement. Behav. Pharmacol. 27(2), 236–239 (2016).
  • 48. Simeth NA, Bause M, Dobmeier M et al. NTS2-selective neurotensin mimetics with tetrahydrofuran amino acids. Bioorg. Med. Chem. 25(1), 350–359 (2017).
  • 49. Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 93(9), 1369–1378 (2011).
  • 50. Thomas RP, Hellmich MR, Townsend CM Jr, Evers BM. Role of gastrointestinal hormones in the proliferation of normal and neoplastic tissues. Endocr. Rev. 24(5), 571–599 (2003).
  • 51. Lazarova M, Popatanasov A, Klissurov R et al. Preventive effect of two new neurotensin analogues on Parkinson's disease rat model. J. Mol. Neurosci. 66(4), 552–560 (2018).
  • 52. Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat. Rev. Drug Discov. 11(6), 462–478 (2012).
  • 53. Reubi J, Waser B, Friess H, Büchler M, Laissue J. Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 42(4), 546–550 (1998).
  • 54. Reubi JC, Waser B, Schaer JC, Laissue JA. Neurotensin receptors in human neoplasms: high incidence in Ewing's sarcomas. Int. J. Cancer 82(2), 213–218 (1999).
  • 55. Souazé F, Dupouy S, Viardot-Foucault V et al. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression. Cancer Res. 66(12), 6243–6249 (2006).
  • 56. Maoret J-J, Pospai D, Rouyer-Fessard C et al. Neurotensin receptor and its mRNA are expressed in many human colon cancer cell lines but not in normal colonic epithelium: binding studies and RT-PCR experiments. Biochem. Biophys. Res. Commun. 203(1), 465–471 (1994).
  • 57. Brouillette RL, Besserer-Offroy E, Mona CE et al. Cell-penetrating pepducins targeting the neurotensin receptor type 1 relieve pain. Pharmacol. Res. 155, 104750 (2020).
  • 58. Osadchii OE. Emerging role of neurotensin in regulation of the cardiovascular system. Eur. J. Pharmacol. 762, 184–192 (2015).
  • 59. Bissette G, Nemeroff CB, Loosen PT, Prange AJ, Lipton MA. Hypothermia and intolerance to cold induced by intracisternal administration of the hypothalamic peptide neurotensin. Nature 262(5569), 607–609 (1976). • In this paper are investigated the effects of centrally administered neurotensin on thermoregulation.
  • 60. Tabarean I. Neurotensin induces hypothermia by activation both neuronal neurotensin receptor 1 and astrocytic neurotensin receptor 2 in the median preoptic nucleus. Neuropharmacology 171, 108069 (2020).
  • 61. Vadine CA, Ayers-Ringler J, Oliveros A et al. Antipsychotic-like effects of a neurotensin receptor type 1 agonist. Behav. Brain Res. 305, 8–17 (2016).
  • 62. Ferraro L, Beggiato S, Borroto-Escuela DO et al. Neurotensin NTS1-dopamine D2 receptor-receptor interactions in putative receptor heteromers: relevance for Parkinson's disease and schizophrenia. Curr. Protein Pept. Sci. 15(7), 681–690 (2014).
  • 63. Einsiedel J, Held C, Hervet M et al. Discovery of highly potent and neurotensin receptor 2 selective neurotensin mimetics. J. Med. Chem. 54(8), 2915–2923 (2011).
  • 64. Thomas JB, Giddings AM, Wiethe RW et al. Identification of N-[(5-{[(4-methylphenyl) sulfonyl] amino}-3-(trifluoroacetyl)-1 H-indol-1-yl) acetyl]-L-leucine (NTRC-824), a neurotensin-like nonpeptide compound selective for the neurotensin receptor type 2. J. Med. Chem. 57(17), 7472–7477 (2014).
  • 65. Garlow SJ, Boone E, Kinkead B, Nemeroff CB. Genetic analysis of the hypothalamic neurotensin system. Neuropsychopharmacology 31(3), 535–543 (2006).
  • 66. Mazella J, Vincent J-P. Functional roles of the NTS2 and NTS3 receptors. Peptides 27(10), 2469–2475 (2006).
  • 67. Kim JT, Napier DL, Weiss HL, Lee EY, Townsend CM, Evers BM. Neurotensin receptor 3/sortilin contributes to tumorigenesis of neuroendocrine tumors through augmentation of cell adhesion and migration. Neoplasia 20(2), 175–181 (2018).
  • 68. White JF, Noinaj N, Shibata Y et al. Structure of the agonist-bound neurotensin receptor. Nature 490(7421), 508–513 (2012).
  • 69. Schaab C, Kling RC, Einsiedel J et al. Structure-based evolution of subtype-selective neurotensin receptor ligands. ChemistryOpen 3(5), 206–218 (2014).
  • 70. Quistgaard EM, Madsen P, Grøftehauge MK, Nissen P, Petersen CM, Thirup SS. Ligands bind to sortilin in the tunnel of a ten-bladed β-propeller domain. Nat. Struct. Mol. Biol. 16(1), 96–98 (2009).
  • 71. Tanaka K, Masu M, Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4(6), 847–854 (1990).
  • 72. Hou T, Shi L, Wang J et al. Label-free cell phenotypic profiling and pathway deconvolution of neurotensin receptor 1. Pharmacol. Res. 108, 39–45 (2016).
  • 73. Turner JT, James-Kracke MR, Camden JM. Regulation of the neurotensin receptor and intracellular calcium mobilization in HT29 cells. J. Pharmacol. Exp. Ther. 253(3), 1049–1056 (1990).
  • 74. Wang H-L, Wu T. Gαq11 mediates neurotensin excitation of substantia nigra dopaminergic neurons. Mol. Brain Res. 36(1), 29–36 (1996).
  • 75. Guha S, Lunn JA, Santiskulvong C, Rozengurt E. Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1. Cancer Res. 63(10), 2379–2387 (2003).
  • 76. Zhao D, Kuhnt-Moore S, Zeng H, Wu JS, Moyer MP, Pothoulakis C. Neurotensin stimulates IL-8 expression in human colonic epithelial cells through Rho GTPase-mediated NF-κB pathways. Am. J. Physiol. Cell Physiol. 284(6), C1397–C1404 (2003).
  • 77. St-Gelais F, Jomphe C, Trudeau L-É. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J. Psychiatry Neurosci. 31(4), 229–245 (2006).
  • 78. Bird JL, Simpson R, Vllasaliu D, Goddard AD. Neurotensin receptor 1 facilitates intracellular and transepithelial delivery of macromolecules. Eur. J. Pharm. Biopharm. 119, 300–309 (2017).
  • 79. Chalon P, Vita N, Kaghad M et al. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett. 386(2–3), 91–94 (1996).
  • 80. Schotte A, Leysen J, Laduron P. Evidence for a displaceable nonspecific [3H] neurotensin binding site in rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 333(4), 400–405 (1986).
  • 81. Botto JM, Guillemare E, Vincent JP, Mazella J. Effects of SR 48692 on neurotensin-induced calcium-activated chloride currents in the Xenopus oocyte expression system: agonist-like activity on the levocabastine-sensitive neurotensin receptor and absence of antagonist effect on the levocabastine insensitive neurotensin receptor. Neurosci. Lett. 223(3), 193–196 (1997).
  • 82. Gendron L, Perron A, Payet MD, Gallo-Payet N, Sarret P, Beaudet A. Low-affinity neurotensin receptor (NTS2) signaling: internalization-dependent activation of extracellular signal-regulated kinases 1/2. Mol. Pharmacol. 66(6), 1421–1430 (2004).
  • 83. Dicou E. Neurotensin protects pancreatic beta cells from serum deprivation. Arch. Physiol. Biochem. 114(5), 299–300 (2008).
  • 84. Martin S, Vincent J-P, Mazella J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J. Neurosci. 23(4), 1198–1205 (2003).
  • 85. Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: research literature analysis. Front. Mol. Neurosci. 12, 143 (2019).
  • 86. Yeung AWK, Tzvetkov NT, Gupta VK et al. Current research in biotechnology: exploring the biotech forefront. Curr. Res. Biotechnol. 1, 34–40 (2019).
  • 87. Yeung AWK, Tzvetkov NT, Jóźwik A et al. Food toxicology: quantitative analysis of the research field literature. Int. J. Food Sci. Nutr. 71(1), 13–21 (2020).
  • 88. Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid. Med. Cell. Longev. 2019, 8278454 (2019).
  • 89. Durazzo A, Lucarini M, Souto EB et al. Polyphenols: a concise overview on the chemistry, occurence, and human health. Phytother. Res. 33(9), 2221–2243 (2019).
  • 90. Durazzo A, Lucarini M. Extractable and non-extractable antioxidants. Molecules 24(10), 1933 (2019).
  • 91. Yeung AWK, Heinrich M, Atanasov AG. Ethnopharmacology – a bibliometric analysis of a field of research meandering between medicine and food science? Front. Pharmacol. 9, 215 (2018).
  • 92. Yeung AWK, Mocan A, Atanasov AG. Let food be thy medicine and medicine be thy food: a bibliometric analysis of the most cited papers focusing on nutraceuticals and functional foods. Food Chem. 269, 455–465 (2018).
  • 93. Santini A, Novellino E. Nutraceuticals: beyound the diet before the drugs. Curr. Bioact. Compd 10(1), 1–12 (2014).
  • 94. Yeung AWK, Tzvetkov NT, Atanasov AG. When neuroscience meets pharmacology: a neuropharmacology literature analysis. Front. Neurosci. 12, 852 (2018).
  • 95. Daliu P, Santini A, Novellino E. From pharmaceuticals to nutraceuticlas: bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 12(1), 1–7 (2019).
  • 96. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2009).
  • 97. Donoghue M, Hsieh F, Baronas E et al. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87(5), e1–e9 (2000).
  • 98. Crocker SJ, Smith PD, Jackson-Lewis V et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J. Neurosci. 23(10), 4081–4091 (2003).
  • 99. Jansen K, Faull R, Dragunow M, Synek B. Alzheimer's disease: changes in hippocampal N-methyl-d-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors – an autoradiographic study. Neuroscience 39(3), 613–627 (1990).
  • 100. Yeung AWK, Tzvetkov NT, Arkells N et al. Molecular neuroscience at its “high”: bibliometric analysis of the most cited papers on endocannabinoid system, cannabis and cannabinoids. J. Cannabis Res. 1(1), 4 (2019).
  • 101. River C, Brown M, Vale W. Effect of neurotensin, substance P and morphine sulfate on the secretion of propactin and growth hormone in the rat. Endocrinology 100(3), 751–754 (1977). • Provides investigations of the action of neurotensin and substance P in comparison to morphine on the in vivo secretion of prolactin and growth chormone.
  • 102. Vijayan E, McCann SM. In vivo and in vitro effects of substance P and neurotensin on gonadotropin and prolactin release. Endocrinology 105(1), 64–68 (1979).
  • 103. Kobayashi EM, Brown M, Vale W. Regional distribution of neurotensin and somatostatin in rat brain. Brain Res. 126(3), 584–588 (1977).
  • 104. Iversen LL, Iversen SD, Bloom F, Douglas C, Brown M, Vale W. Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro. Nature 273, 161–163 (1978).
  • 105. Singh LK, Pang X, Alexacos N, Letourneau R, Theoharides TC. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: a link to neurogenic skin disorders. Brain Behav. Immun. 13(3), 225–239 (1999).
  • 106. Palacios JM, Kuhar MJ. Neurotensin receptors are located on dopamine-containing neurons in rat midbrain. Nature 294, 587–589 (1981).
  • 107. Diaz J, Lévesque D, Lammers CH et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65(3), 731–745 (1995).
  • 108. Egloff P, Hillenbrand M, Klenk C et al. Structure of signaling-competent neurotensin receptor 1 by directed evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 111(6), E655–E662 (2014).
  • 109. Li J, Song J, Zaytseva YY et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533, 411–415 (2016).
  • 110. Svendsen B, Pedersen J, Albrechtsen NJW et al. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and sistal small intestine. Endocrinology 156(3), 847–857 (2015).
  • 111. Checler F. Experimental stroke: neurolysin back on stage. J. Neurochem. 129, 1–3 (2014).
  • 112. Checler F, Ferro ES. Neurolysin: from initial detection to latest advances. Neurochem. Res. 43, 2017–2024 (2018).
  • 113. Paschoalin T, Carmona AK, Rodrigues EG et al. Characterization of thimet oligopeptidase and neurolysin activates in B16F10-nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol. Cancer 6, 44 (2007).
  • 114. Haba K, Ogawa N, Asanuma M, Hirata H, Sora YH, Mori A. Changes of neuropeptides and their receptors in experimental stroke gerbil brains. J. Neurol. Sci. 108(1), 88–92 (1992).
  • 115. Albert-Wetßenberger C, Sirén A-L, Kleinschnitz C. Ischemic stroke and traumatic brain injury: the role of the kallikrein-kini system. Prog. Neurobiol. 101–102, 65–82 (2013).
  • 116. Nikolaou S, Qui S, Fiorentino F et al. The role of neurotensin and its receptors in nongastrointestinal cancers: a review. Cell Commun. Signal. 18(68), 1–10 (2020).
  • 117. Gromova P, Rubin BP, Thys A et al. Neurotensin receptor 1 is expressed in gastrointestinal stromal tumors but not in interstitial cells of cajal. PLoS ONE 6(2), e14710 (2020).
  • 118. Huang W, Masureel M, Qu Q et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 573, 303–308 (2020).
  • 119. Bumbak F, Thomas T, Noonan-Williams BJ et al. Conformational changes in tyrosine 11 of neurotensin are required to activate the neurotensin receptor 1. ACS Pharmacol. Transl. Sci. 3(4), 690–705 (2020).
  • 120. Machida R, Tokumura T, Tsuchiya Y, Sasaki A, Abe K. Pharmacokinetics of novel hexapeptides with neurotensin activity in rats. Biol. Pharm. Bull. 16(1), 43–47 (1993).
  • 121. McMahon BM, Boules M, Warrington L, Richelson E. Neurotensin analogs indications for use as potential antipsychotic compounds. Life Sci. 70(10), 1101–1119 (2002).
  • 122. Tyler BM, Douglas CL, Fauq A et al. In vitro binding and CNS effects of novel neurotensin agonists that cross the blood–brain barrier. Neuropharmacology 38(7), 1027–1034 (1999).
  • 123. Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res. 856, 48–54 (2000).
  • 124. Tyler-McMahon BM, Stewart JA, Farinas F, McCormick DJ, Richelson E. Highly potent neurotensin analog that causes hypothermia and antinociception. Eur. J. Pharmacol. 390, 107–111 (2000).
  • 125. Devader C, Béraud-Dufour S, Coppola T, Mazella J. The anti-apoptotic role of neurotensin. Cells 2(1), 124–135 (2013).
  • 126. Bourcier T, Rondeau N, Paquet S et al. Expression of neurotensin receptors in human corneal keratocytes. IOVS 43, 1765–1771 (2002).
  • 127. Choi KE, Hall Cl, Sun JM et al. A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J. 26(7), 2799–2810 (2012).
  • 128. Fanelli R, Floquet N, Besserer-Offroy É et al. Use of molecular modeling to design selective NTS2 neurotensin analogues. J. Med. Chem. 60(8), 3303–3313 (2017).
  • 129. Wustrow DJ, Davis MD, Akunne HC et al. Reduced amide bond neurotensin 8–13 mimetics with potent in vivo activity. Bioorg. Med. Chem. Lett. 5(9), 997–1002 (1995).
  • 130. Keller N, Kuhn KK, Einsiedel J et al. Mimicking of arginine by functionalized Nω-carbamoylated arginine as a new broadly applicable approach to labeled bioactive peptides: high affinity angiotensin, neuropeptide Y, neuropeptide FF, and neurotensin receptor ligands as examples. J. Med. Chem. 59(5), 1925–1945 (2016).
  • 131. Keller M, Mahuroof SA, Yee VH et al. Fluorescence labeling of neurotensin(8–13) via arginine residues gives molecular tools with high receptor affinity. ACS Med. Chem. Lett. 11(1), 16–22 (2020).
  • 132. Gaetner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 39, 126–138 (2012).
  • 133. Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. Eur. J. Nucl. Med. Mol. Imaging. 39, 11–30 (2012).
  • 134. Huhtala T, Weisell J, Rytkonen J, Narvanen A. Peptide labeling strategies for imaging agents. Methods Mol. Biol. 1088, 171–183 (2014).