We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

The promise and current status of CDK12/13 inhibition for the treatment of cancer

    Solomon Tadesse

    Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA

    ,
    Derek R Duckett

    Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA

    &
    Andrii Monastyrskyi

    *Author for correspondence: Tel.: +1 813 745 3660;

    E-mail Address: Andrii.Monastyrskyi@moffitt.org

    Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA

    Published Online:https://doi.org/10.4155/fmc-2020-0240

    CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Cramer P. Organization and regulation of gene transcription. Nature 573(7772), 45–54 (2019).
    • 2. Sainsbury S, Bernecky C, Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16(3), 129–143 (2015).
    • 3. Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim. Biophys. Acta 1859(1), 169–176 (2016).
    • 4. Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26(19), 2119–2137 (2012).
    • 5. Bentley DL. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15(3), 163–175 (2014).
    • 6. Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21(9), 327–335 (1996).
    • 7. Core L, Adelman K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33(15–16), 960–982 (2019).
    • 8. Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat. Rev. Mol. Cell Biol. 19(10), 621–637 (2018).
    • 9. Vos SM, Farnung L, Urlaub H, Cramer P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560(7720), 601–606 (2018). • Defined the paused state of Pol II.
    • 10. Ni Z, Saunders A, Fuda NJ et al. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol. Cell Biol. 28(3), 1161–1170 (2008).
    • 11. Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19(7), 464–478 (2018).
    • 12. Guo J, Price DH. RNA polymerase II transcription elongation control. Chem. Rev. 113(11), 8583–8603 (2013).
    • 13. Baejen C, Andreani J, Torkler P et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell 66(1), 38 (2017).
    • 14. Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20(21), 2922–2936 (2006).
    • 15. Eick D, Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113(11), 8456–8490 (2013). • Reviews the relation between CDKs and CTD.
    • 16. Corden JL. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113(11), 8423–8455 (2013).
    • 17. Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet. 24(6), 280–288 (2008).
    • 18. Harlen KM, Churchman LS. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18(4), 263–273 (2017).
    • 19. Bosken CA, Farnung L, Hintermair C et al. The structure and substrate specificity of human CDK12/cyclin K. Nat. Commun. 5, 3505 (2014). •• Shows that CDK12 contains an additional C-terminal helix, αK, outside the canonical kinase fold.
    • 20. Liang K, Gao X, Gilmore JM et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell Biol. 35(6), 928–938 (2015).
    • 21. Greifenberg AK, Honig D, Pilarova K et al. Structural and functional analysis of the CDK13/cyclin K complex. Cell Rep. 14(2), 320–331 (2016).
    • 22. Fan Z, Devlin JR, Hogg SJ et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci. Adv. 6(18), eaaz5041 (2020).
    • 23. Ko TK, Kelly E, Pines J. CrkRS: a novel conserved CDC2-related protein kinase that colocalises with SC35 speckles. J. Cell Sci. 114(14), 2591–2603 (2001).
    • 24. Marques F, Moreau JL, Peaucellier G et al. A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs. Biochem. Bioph. Res. Co. 279(3), 832–837 (2000).
    • 25. Blazek D, Kohoutek J, Bartholomeeusen K et al. The cyclin K/CDK12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25(20), 2158–2172 (2011). • Describes the role of CDK12/cyclin K in DNA damage response.
    • 26. Kohoutek J, Blazek D. Cyclin K goes with CDK12 and CDK13. Cell Div. 7, 12 (2012).
    • 27. Greenleaf AL. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription 10(2), 91–110 (2019).
    • 28. Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 10(3), 351–370 (2020).
    • 29. Dai Q, Lei T, Zhao C et al. Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. J. Biol. Chem. 287(30), 25344–25352 (2012).
    • 30. Juan HC, Lin Y, Chen HR, Fann MJ. CDK12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 23(6), 1038–1048 (2016).
    • 31. Hamilton MJ, Caswell RC, Canham N et al. Heterozygous mutations affecting the protein kinase domain of CDK13 cause a syndromic form of developmental delay and intellectual disability. J. Med. Genet. 55(1), 28–38 (2018).
    • 32. Zhang T, Kwiatkowski N, Olson CM et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol. 12(10), 876–884 (2016). •• Describes the firist Cys-targeting CDK12/13 inhibitor.
    • 33. Yu M, Yang W, Ni T et al. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science 350(6266), 1383–1386 (2015).
    • 34. Choi SH, Kim S, Jones KA. Gene expression regulation by CDK12: a versatile kinase in cancer with functions beyond CTD phosphorylation. Exp. Mol. Med. 52(5), 762–771 (2020).
    • 35. Davidson L, Muniz L, West S. 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev. 28(4), 342–356 (2014).
    • 36. Eifler TT, Shao W, Bartholomeeusen K et al. Cyclin-dependent kinase 12 increases 3′ end processing of growth factor-induced c-FOS transcripts. Mol. Cell Biol. 35(2), 468–478 (2015).
    • 37. Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet. 20(10), 599–614 (2019).
    • 38. Dubbury SJ, Boutz PL, Sharp PA. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 564(7734), 141–145 (2018).
    • 39. Krajewska M, Dries R, Grassetti AV et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat. Commun. 10(1), 1757 (2019).
    • 40. Iniguez AB, Stolte B, Wang EJ et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell 33(2), 202–216.e6 (2018). •• Defines a role for CDK12 in driving tumor initiation and progression and as a potential therapeutic target in cancer.
    • 41. Quereda V, Bayle S, Vena F et al. Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell 36(5), 545–558.e7 (2019). •• Discusses a role for CDK12 in driving tumor initiation and progression and as a potential therapeutic target in cancer.
    • 42. Ekumi KM, Paculova H, Lenasi T et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the CDK12/CycK complex. Nucleic Acids Res. 43(5), 2575–2589 (2015).
    • 43. Joshi PM, Sutor SL, Huntoon CJ, Karnitz LM. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J. Biol. Chem. 289(13), 9247–9253 (2014).
    • 44. Bajrami I, Frankum JR, Konde A et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 74(1), 287–297 (2014).
    • 45. Popova T, Manie E, Boeva V et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res. 76(7), 1882–1891 (2016).
    • 46. Wu YM, Cieslik M, Lonigro RJ et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 173(7), 1770–1782.e14 (2018).
    • 47. Choi SH, Martinez TF, Kim S et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev. 33(7–8), 418–435 (2019).
    • 48. Even Y, Durieux S, Escande ML et al. CDC2L5, a CDK-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J. Cell Biochem. 99(3), 890–904 (2006).
    • 49. Tien JF, Mazloomian A, Cheng SG et al. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res. 45(11), 6698–6716 (2017). •• Describes a role for CDK12 in driving tumor initiation and progression and as a potential therapeutic target in cancer.
    • 50. Berro R, Pedati C, Kehn-Hall K et al. CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. J. Virol. 82(14), 7155–7166 (2008).
    • 51. Lei T, Zhang P, Zhang X et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation. Nat. Commun. 9(1), 1876 (2018).
    • 52. Chirackal Manavalan AP, Pilarova K, Kluge M et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep. 20(9), e47592 (2019).
    • 53. Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J. Clin. Pathol. 71(11), 957–962 (2018).
    • 54. Bell D, Berchuck A, Birrer M et al. Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011).
    • 55. Staaf J, Glodzik D, Bosch A et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25(10), 1526–1533 (2019).
    • 56. Sokol ES, Pavlick D, Frampton GM et al. Pan-cancer analysis of CDK12 loss-of-function alterations and their association with the focal tandem-duplicator phenotype. Oncologist 24(12), 1526–1533 (2019).
    • 57. Capra M, Nuciforo PG, Confalonieri S et al. Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res. 66(16), 8147–8154 (2006).
    • 58. Choi HJ, Jin S, Cho H et al. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling. EMBO Rep. 20(10), e48058 (2019).
    • 59. Liu H, Shin SH, Chen H et al. CDK12 and PAK2 as novel therapeutic targets for human gastric cancer. Theranostics 10(14), 6201–6215 (2020).
    • 60. Bai N, Xia F, Wang W, Lei Y, Bo J, Li X. CDK12 promotes papillary thyroid cancer progression through regulating the c-myc/β-catenin pathway. J. Cancer 11(15), 4308–4315 (2020).
    • 61. Toyoshima M, Howie HL, Imakura M et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc. Natl Acad. Sci. U.S.A. 109(24), 9545–9550 (2012).
    • 62. Paculova H, Kramara J, Simeckova S et al. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Tumour Biol. 39(10), 1010428317727479 (2017).
    • 63. Marshall CH, Imada EL, Tang Z, Marchionni L, Antonarakis ES. CDK12 inactivation across solid tumors: an actionable genetic subtype. Oncoscience 6(5–6), 312–316 (2019).
    • 64. Antonarakis ES, Velho PI, Agarwal N et al. CDK12-altered prostate cancer: clinical features and therapeutic outcomes to standard systemic therapies, PARP inhibitors, and PD1 inhibitors. Ann. Oncol. 30, 326 (2019).
    • 65. Schweizer MT, Gulati R, Brown LC et al. CDK12-mutated prostate cancer (PC): clinical outcomes to standard therapies and immune checkpoint blockade. J. Clin. Oncol. 38(6), 191 (2020).
    • 66. Antonarakis ES, Velho PI, Fu W et al. CDK12-altered prostate cancer: clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP-Ribose) polymerase inhibitors, and PD-1 inhibitors. JCO Precis. Oncol. 4, 370–381 (2020).
    • 67. Luo J, Antonarakis ES. PARP inhibition – not all gene mutations are created equal. Nat. Rev. Urol. 16(1), 4–6 (2019).
    • 68. Reimers MA, Yip SM, Zhang L et al. Clinical outcomes in cyclin-dependent kinase 12 mutant advanced prostate cancer. Eur. Urol. 77(3), 333–341 (2020).
    • 69. San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).
    • 70. Antolin AA, Ameratunga M, Banerji U, Clarke P, Workman P, Al-Lazikani B. The kinase polypharmacology landscape of clinical PARP inhibitors. Sci Rep. 10(1), 2585 (2019).
    • 71. Naidoo K, Wai PT, Maguire SL et al. Evaluation of CDK12 protein expression as a potential novel biomarker for DNA damage response-targeted therapies in breast cancer. Mol. Cancer Ther. 17(1), 306–315 (2018).
    • 72. Johnson SF, Cruz C, Greifenberg AK et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep. 17(9), 2367–2381 (2016).
    • 73. Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther. 4, 34 (2019).
    • 74. Lee A. Tucatinib: first approval. Drugs 80(10), 1033–1038 (2020).
    • 75. Wang C, Wang H, Lieftink C et al. CDK12 inhibition mediates DNA damage and is synergistic with sorafenib treatment in hepatocellular carcinoma. Gut 69(4), 727–736 (2020).
    • 76. Bayles I, Krajewska M, Pontius WD et al. Ex vivo screen identifies CDK12 as a metastatic vulnerability in osteosarcoma. J. Clin. Invest. 129(10), 4377–4392 (2019).
    • 77. Stefan E, Bister K. MYC and RAF: key effectors in cellular signaling and major drivers in human cancer. Curr. Top. Microbiol. Immunol. 407, 117–151 (2017).
    • 78. Zeng M, Kwiatkowski NP, Zhang T et al. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Elife 7, e39030 (2018).
    • 79. Ferrarelli LK. New connections: Ewing's sarcoma's driver is its Achilles' heel. Sci. Signal. 11(527), eaat9379 (2018).
    • 80. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell 168(4), 629–643 (2017).
    • 81. Kim HE, Kim DG, Lee KJ et al. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas. PLoS One 7(8), e43223 (2012).
    • 82. Chen HR, Lin GT, Huang CK, Fann MJ. CDK12 and CDK13 regulate axonal elongation through a common signaling pathway that modulates CDK5 expression. Exp. Neurol. 261, 10–21 (2014).
    • 83. Dixon-Clarke SE, Elkins JM, Cheng SW, Morin GB, Bullock AN. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Sci. Rep. 5, 17122 (2015).
    • 84. Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol. 8(9), 180112 (2018).
    • 85. Ito M, Tanaka T, Toita A et al. Discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective cyclin-dependent kinase 12 (CDK12) inhibitors. J. Med. Chem. 61(17), 7710–7728 (2018). •• Reported the first ATP-competitive CDK12/13 inhibitors.
    • 86. Johannes JW, Denz CR, Su N et al. Structure-based design of selective noncovalent CDK12 inhibitors. ChemMedChem 13(3), 231–235 (2018).
    • 87. Gehringer M, Laufer SA. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J. Med. Chem. 62(12), 5673–5724 (2019).
    • 88. Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17(5), 353–377 (2018).
    • 89. Kwiatkowski N, Zhang T, Rahl PB et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511(7511), 616–620 (2014).
    • 90. Olson CM, Liang Y, Leggett A et al. Development of a selective CDK7 covalent inhibitor reveals predominant cell cycle phenotype. Cell Chem. Biol. 26(6), 792–803.e10 (2019).
    • 91. Blazek D. Transcriptional kinases: caught by a sticky drug. Nat. Chem. Biol. 12(10), 765–766 (2016).
    • 92. Gao Y, Zhang T, Terai H et al. Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors. Cell. Chem. Biol. 25(2), 135–142.e5 (2018).
    • 93. Liu Y, Hao M, Leggett A et al. Discovery of MFH290: a potent and highly selective covalent inhibitor for cyclin-dependent kinase 12/13. J. Med. Chem. 63(13), 6708–6726 (2020).
    • 94. Paruch K, Dwyer MP, Alvarez C et al. Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett. 1(5), 204–208 (2010).
    • 95. Bibian M, Rahaim RJ, Choi JY et al. Development of highly selective casein kinase 1delta/1epsilon (CK1delta/epsilon) inhibitors with potent antiproliferative properties. Bioorg. Med. Chem. Lett. 23(15), 4374–4380 (2013).
    • 96. Blethrow J, Zhang C, Shokat KM, Weiss EL. Design and use of analog-sensitive protein kinases. Curr. Protoc. Mol. Biol. 66(1), 18.11.1–18.11.19 (2004).
    • 97. Lopez MS, Kliegman JI, Shokat KM. The logic and design of analog-sensitive kinases and their small molecule inhibitors. Method. Enzymol. 548, 189–213 (2014).
    • 98. Bishop AC, Ubersax JA, Petsch DT et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802), 395–401 (2000).
    • 99. Bartkowiak B, Greenleaf AL. Expression, purification, and identification of associated proteins of the full-length hCDK12/cyclinK complex. J. Biol. Chem. 290(3), 1786–1795 (2015).
    • 100. Bartkowiak B, Yan C, Greenleaf AL. Engineering an analog-sensitive CDK12 cell line using CRISPR/Cas. Biochim. Biophys. Acta 1849(9), 1179–1187 (2015).
    • 101. Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: a 2020 update. Pharmacol. Res. 152, 104609 (2020). • Reviews approved protein kinase inhibitors.
    • 102. Dalton SE, Campos S. Covalent small molecules as enabling platforms for drug discovery. ChemBioChem 21(8), 1080–1100 (2019).
    • 103. Ray S, Murkin AS. New electrophiles and strategies for mechanism-based and targeted covalent inhibitor design. Biochemistry 58(52), 5234–5244 (2019).
    • 104. Lee CU, Grossmann TN. Reversible covalent inhibition of a protein target. Angew. Chem. Int. Ed. Engl. 51(35), 8699–8700 (2012).
    • 105. Devkota AK, Edupuganti R, Yan C et al. Reversible covalent inhibition of eEF-2K by carbonitriles. ChemBioChem 15(16), 2435–2442 (2014).
    • 106. Serafimova IM, Pufall MA, Krishnan S et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8(5), 471–476 (2012).
    • 107. Bradshaw JM, Mcfarland JM, Paavilainen VO et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol. 11(7), 525–531 (2015).
    • 108. Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol. Therapeut. 156, 59–68 (2015).
    • 109. Christodoulou MS, Caporuscio F, Restelli V et al. Probing an allosteric pocket of CDK2 with small molecules. ChemMedChem 12(1), 33–41 (2017).
    • 110. Song K, Liu X, Huang W et al. Improved method for the identification and validation of allosteric sites. J. Chem. Inf. Model. 57(9), 2358–2363 (2017).
    • 111. Betzi S, Alam R, Martin M et al. Discovery of a potential allosteric ligand binding site in CDK2. ACS Chem. Biol. 6(5), 492–501 (2011).
    • 112. Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B 10(2), 207–238 (2020).
    • 113. Moreau K, Coen M, Zhang AX et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br. J. Pharmacol. 177(8), 1709–1718 (2020).
    • 114. Xue G, Chen JH, Liu LH et al. Protein degradation through covalent inhibitor-based PROTACs. Chem. Commun. 56(10), 1521–1524 (2020).
    • 115. Mayor-Ruiz C, Winter GE. Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discov. Today Technol. 31, 81–90 (2019).
    • 116. Zhou F, Chen L, Cao C et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur. J. Med. Chem. 187, 111952 (2020).
    • 117. Sun XY, Gao HY, Yang YQ et al. PROTACs: great opportunities for academia and industry. Signal Transduct. Target. Ther. 4, 64 (2019).
    • 118. Mullard A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 18, 237–239 (2019).
    • 119. Fisher SL, Phillips AJ. Targeted protein degradation and the enzymology of degraders. Curr. Opin. Chem. Biol. 44, 47–55 (2018).
    • 120. Slabicki M, Kozicka Z, Petzold G et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585(7824), 293–297 (2020). •• Firist report on degradation of cyclin K by a small molecule.
    • 121. Mayor-Ruiz C, Bauer S, Brand M et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16(11), 1199–1207 (2020).
    • 122. Lv L, Chen P, Cao L et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. Elife 9, e59994 (2020).
    • 123. Bettayeb K, Oumata N, Echalier A et al. CR8, a potent and selective roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 27(44), 5797–5807 (2008).
    • 124. Martin MP, Endicott JA, Noble MEM. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem. 61(5), 439–452 (2017).
    • 125. Shah M, Nunes MR, Stearns V. CDK4/6 inhibitors: game changers in the management of hormone receptor–positive advanced breast cancer? Oncology (Williston Park) 32(5), 216–222 (2018).
    • 126. Sánchez-Martínez C, Gelbert LM, Lallena MJ, De Dios A. Cyclin-dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett. 25(17), 3420–3435 (2015).
    • 127. Ketley A, Wojciechowska M, Ghidelli-Disse S et al. CDK12 inhibition reduces abnormalities in cells from patients with myotonic dystrophy and in a mouse model. Sci. Transl. Med. 12(541), eaaz2415 (2020).
    • 128. Henry KL, Kellner D, Bajrami B et al. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling. Sci. Signal. 11(541), eaam8216 (2018).