We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

1,8-naphthyridine derivatives: an updated review on recent advancements of their myriad biological activities

    Shivani Mithula

    Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India

    ,
    Adinarayana Nandikolla

    Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India

    ,
    Sankaranarayanan Murugesan

    Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India

    &
    Venkata GCS Kondapalli

    *Author for correspondence: Tel.: +91 406 630 3527;

    E-mail Address: kvgc@hyderabad.bits-pilani.ac.in

    Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India

    Published Online:https://doi.org/10.4155/fmc-2021-0086

    Among all nitrogen-containing heterocycles, the 1,8-naphthyridine scaffold has recently gained an immense amount of curiosity from numerous researchers across fields of medicinal chemistry and drug discovery. This new attention can be ascribed to its versatility of synthesis, its reactiveness and the variety of biological activities it has exhibited. Over the past half-decade, numerous diverse biological evaluations have been conducted on 1,8-naphthyridine and its derivatives in a quest to unravel novel pharmacological facets to this scaffold. Its potency to treat neurodegenerative and immunomodulatory disorders, along with its anti-HIV, antidepressant and antioxidant properties, has enticed researchers to look beyond its broad-spectrum activities, providing further scope for exploration. This review is a consolidated update of previous works on 1,8-naphthyridines and their analogs, focusing on the past 5 years.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Allen CFH. The naphthyridines. Chem. Rev. 47(2), 275–305 (1950).
    • 2. Paudler WW, Kress TJ. The naphthyridines. Adv. Heterocycl. Chem. 11(1), 123–175 (1970).
    • 3. Koller G. Über das 1.8-naphthyridin. Ber. Dtsch. Chem. Ges. 60(8), 1918–1920 (1927).
    • 4. Ikekawa N. Studies on naphthyridines. I. Synthesis of 1,6-naphthyridine. Chem. Pharm. Bull. 6(3), 263–269 (1958).
    • 5. Ikekawa N. Studies on naphthyridines. III. Syntheses of 2,10-diazaanthracene and 1, 7-naphthyridine. Chem. Pharm. Bull. 6(4), 401–404 (1958).
    • 6. Albert A. 355. Naphthyridines: ionization constants and spectra of four parent substances. J. Chem. Soc. 1960, 1790–1793 (1960).
    • 7. Ikekawa N. Studies on naphthyridines. II. Synthesis of 2,7-naphthyridine. Chem. Pharm. Bull. 6(3), 269–272 (1958).
    • 8. Giacomello G, Gualtieri F, Riccieri FM, Stein ML. Synthesis of 2,6-naphthyridine. Tetrahedron Lett. 6(16), 1117–1121 (1965).
    • 9. Rosita T, Taurins A. Synthesis of 2, 6-naphthyridine and some of its derivatives. Tetrahedron Lett. 6(31), 2737–2744 (1965).
    • 10. Anderson EC, Sneddon HF, Hayes CJ. A mild synthesis of substituted 1,8-naphthyridines. Green Chem. 21(11), 3050–3058 (2019). • Involves a novel synthetic procedure with high yield and facile reaction conditions.
    • 11. Gurjar VK, Pal D. Recent developments and multiple biological activities available with 1,8-naphthyridine derivatives: a review. Int. J. Pharm. Pharm. 11(1), 17–37 (2019).
    • 12. Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M. 1,8-naphthyridine derivatives: a review of multiple biological activities. Archiv der Pharmazie 348(12), 837–860 (2015).
    • 13. Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP. 1,8-naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem. 5(5), 1063–1065 (1962).
    • 14. Popiołek L, Monika G. The impact of modifying the chemical structure of nalidixic acid on the antimicrobial activity of its derivatives: a review. IRJPAC 7(4), 191–202 (2015).
    • 15. Brown EV. 1,8-Naphthyridines. I. Derivatives of 2-and 4-methyl-1,8-naphthyridines. J. Org. Chem. 30(5), 1607–1610 (1965).
    • 16. Litvinov VP. Chemistry and biological activities of 1,8-naphthyridines. Russ. Chem. Rev. 73(7), 637–670 (2004).
    • 17. Srivastava SK, Jha A, Agarwal SK, Mukherjee R, Burman AC. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives. Anticancer Agents Med. Chem. 7(6), 685–709 (2007).
    • 18. Paudler WW, Sheets RM. Recent developments in naphthyridine chemistry. Adv. Heterocycl. Chem. 33, 147–184 (1983).
    • 19. Fadda AA, El-Hadidy SA, Elattar KM. Advances in 1,8-naphthyridines chemistry. Synth. Commun. 45(24), 2765–2801 (2015).
    • 20. Ojha M, Yadav D, Kumar A, Dasgupta S, Yadav R. 1,8-naphthyridine derivatives: a privileged scaffold for versatile biological activities. Mini Rev. Med. Chem. 21(5), 576–591 (2021).
    • 21. Paudler WW, Kress TJ. Naphthyridine chemistry. V. One-step synthesis of 1,8-naphthyridines. J. Org. Chem. 32(3), 832–833 (1967).
    • 22. Hamada Y, Takeuchi I. Studies on the syntheses and reaction of nitrogen-containing heterocyclic compounds centered the naphthyridines. Yakugaku Zasshi. 120(2), 206–223 (2000).
    • 23. Litvinov VP, Roman SV, Vladimir DD. Naphthyridines. Structure, physicochemical properties and general methods of synthesis. Russ. Chem. Rev. 69(3), 201–220 (2000).
    • 24. Ayoub AI, Saleh MY. Synthesis, identification and antibacterial evaluation of some 1,3,4-oxadiazoles derivative on 1,8-naphthyridine ring. World J. Pharm. Pharm. Sci. 6(9), 302–311 (2017).
    • 25. Makhanya TR, Gengan RM, Ata A. Synthesis and biological evaluation of novel fused indolo [3,2-c][1,8] naphthyridine derivatives as potential antibacterial agents. Synth. Commun. 49(6), 823–835 (2019).
    • 26. Akula M, Yogeeswari P, Sriram D, Jha M, Bhattacharya A. Synthesis and anti-tubercular activity of fused thieno-/furo-quinoline compounds. RSC Adv. 6(52), 46073–46080 (2016).
    • 27. Patil PT, Warekar PP, Patil KT et al. A simple and efficient one-pot novel synthesis of pyrazolo [3,4-b][1,8] naphthyridine and pyrazolo [3,4-d] pyrimido [1,2-a] pyrimidine derivatives as anti-inflammatory agents. Res. Chem. Intermed. 44, 1119–1130 (2018).
    • 28. Behalo MS, Mele G. Synthesis and evaluation of pyrido [2,3-d] pyrimidine and 1,8-naphthyridine derivatives as potential antitumor agents. J. Heterocycl. Chem. 54(1), 295–300 (2016).
    • 29. Makhanya TR, Gengan RM, Pandian P, Chuturgoon AA, Tiloke C, Atar A. Phosphotungstic acid catalyzed one pot synthesis of 4, 8, 8-trimethyl-5-phenyl-5, 5a, 8, 9-tetrahydrobenzo [b][1,8] naphthyridin-6 (7H)-one derivatives and their biological evaluation against A549 lung cancer cells. J. Heterocycl. Chem. 55(5), 1193–1204 (2018).
    • 30. Zhao XZ, Smith SJ, Maskell DP et al. HIV-1 integrase strand transfer inhibitors with reduced susceptibility to drug resistant mutant integrases. ACS Chem. Biol. 11(4), 1074–1081 (2016).
    • 31. Paudler WW, Thomas KJ. The Skraup syntheses and NMR spectra of some methyl naphthyridines. J. Heterocycl. Chem. 4(2), 284–289 (1967).
    • 32. Sakram B, Ashok K, Rambabu S, Sonyanaik B, Ravi D. A novel and efficient synthesis of 3-iodo substituted 1,8-naphthyridines by electrophilic cyclization of 2-amino nicotinaldehyde and their antimicrobial activity. Russ. J. Gen. Chem. 87(8), 1794–1799 (2017).
    • 33. Sakram B, Ravi D, Ashok K, Rambabu S, Sonyanaik B, Kurumanna A. An efficient microwave-assisted synthesis of novel 2-{4-[(3-aryl-1,8-naphthyridin-2-yl) amino] phenyl}-1H-benzo [de] isoquinoline-1, 3 (2H)-diones and their antimicrobial activity. Russ. J. Gen. Chem. 88, 780–788 (2018).
    • 34. Sakram B, Sonyanaik B, Ashok K et al. Eco-friendly synthesis of 1,8-naphthyridine 5-aryl-1, 3, 4-oxadiazole derivatives under solvent-free solid-state conditions and their antimicrobial activity. Res. Chem. Intermed. 43, 1881–1892 (2017).
    • 35. Sakram B, Kurumanna A, Ashok A, Rambabu S, Ravi V, Kumar BS. Synthesis and antibacterial activity of novel 3-N-substituted 1,8-naphthyridin-2 (1 H)-ones. Russ. J. Gen. Chem. 89, 2534–2543 (2019).
    • 36. Sakram B, Madhu P, Sonyanaik B, Rambabu S, Ravi D, Kurumanna A. Ferric chloride-catalyzed synthesis of 2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxylate derivatives and their biological evaluation. Russ. J. Gen. Chem. 88, 1224–1227 (2018).
    • 37. Bhatt S, Bagal SM, Butola S, Dhar AK, Mahesh R. Antidepressant- and anxiolytic-like effect of novel 5-hydroxytryptamine3 receptor antagonist 2-[4-(3-chlorophenyl) piperazin-1-yl]-1,8-naphthyridine-3-carboxylic acid (7e)-: an approach using rodent behavioral antidepressant and anxiolytic test battery. Int. J. Nutr. Pharmacol. Neurol. Dis. 6(2), 81–89 (2016).
    • 38. Sachdeva S, Bhatia S, Mittal A, Sinha M. Synthesis, evaluation and in silico studies of 1,8-naphthyridine derivatives against antimicrobial activity. J. Appl. Pharm. Sci. 5(7), 53–59 (2015).
    • 39. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN. Design, synthesis, and biological evaluation of 1,8-naphthyridine glucosamine conjugates as antimicrobial agents. Drug Dev. Res. 80(1), 179–186 (2019).
    • 40. Arab HA, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A, Emami S. New 7-piperazinylquinolones containing (benzo [d] imidazol-2-yl) methyl moiety as potent antibacterial agents. Mol. Divers. 22(4), 815–825 (2018).
    • 41. Gao LZ, Xie YS, Li T, Huang WL, Hu GQ. Synthesis and antibacterial activity of novel [1,2,4] triazolo [3,4-h][1,8] naphthyridine-7-carboxylic acid derivatives. Chin. Chem. Lett. 26(1), 149–151 (2015).
    • 42. Kim T, Park SJ, Chong YP et al. Fluoroquinolone resistance of Streptococcus pneumoniae isolates causing invasive disease: special focus on zabofloxacin. Diagn. Microbiol. Infect. Dis. 86(2), 181–183 (2016).
    • 43. Popiolek L, Biernasiuk A. New nalidixic acid-1,3-thiazolidin-4-one hybrids: design, synthesis and in vitro antimicrobial activity. Phosphorus Sulfur Silicon Relat. Elem. 192(1), 23–27 (2017).
    • 44. Popiolek L, Biernasiuk A, Malm A. Synthesis and in vitro antimicrobial activity of nalidixic acid hydrazones. J. Heterocycl. Chem. 53(5), 1589–1594 (2016).
    • 45. Marinov M, Kostova I, Naydenova E, Stoyanov N. Synthesis and antimicrobial activity of 1,8-naphthalimide derivatives of nalidixic acid. J. Chem. Technol. Metall. 54(6), 1146–1156 (2019).
    • 46. Vijaya Bhasker G, Laxminarayana E, Latha A, Chary MT. Synthesis and antibacterial activity of 2-((3/4-(1,8-naphthyridin-2-Yl)phenoxy)methyl)-N-phenylbenzamide derivatives. Rasayan J. Chem. 10(4), 1521–1528 (2017).
    • 47. Ravi D, Rambabu S, Ashok K, Madhu P, Sakram B. An exceedingly mild, green synthesis of substituted N-3-diaryl-1,8-naphthyridin-2-amine derivatives and their antimicrobial activity. J. Heterocycl. Chem. 55(4), 957–963 (2018).
    • 48. Ayoub AI, Saleh MY. Synthesis of some new heterocyclic compound derivative from 2-chloro-3-formyl-1,8,-naphthyridine. Eur. Chem. Bull. 5(4), 151–156 (2016).
    • 49. Dharavath R, Boda S. A synthesis and biological screening of newly substituted 9-methyl-6-aryl-[1,2,4] triazolo [4,3-a][1,8] naphthyridines using chloranil. Synth. Commun. 49(14), 1741–1749 (2019).
    • 50. Gohil JD, Patel HB, Patel MP. Synthesis and evaluation of new chromene based [1,8] naphthyridines derivatives as potential antimicrobial agents. RSC Adv. 6(78), 74726–74733 (2016).
    • 51. Peraman R, Varma RV, Reddy YP. Re-engineering nalidixic acid's chemical scaffold: a step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens. Bioorg. Med. Chem. Lett. 25(19), 4314–4319 (2015).
    • 52. Banoth S, Perugu S, Boda S. Green synthesis of fused imidazo [1,2-a][1,8] naphthyridine derivatives catalyzed by DABCO under solvent-free solid-state conditions and their biological evaluation. J. Heterocycl. Chem. 55(3), 709–715 (2018). •• Describes a novel solvent-free condition for reaction, producing high yields.
    • 53. Sakram B, Ravi D, Raghupathi M, Kumar BS, Anantha Lakshmi PV. A facile greener synthesis, antimicrobial evaluation and molecular modelling of new 4-aryl-2-(3-(2-(trifluoromethyl) phenyl)-1,8-naphthyridin-2-yl) phthalazin-1 (2H)-one derivatives. Res. Chem. Intermed. 45, 2007–2022 (2019).
    • 54. Bhasker GV, Satyanarayana GV, Laxminarayana E, Latha A, Chary MT. Synthesis, antibacterial activity, and docking studies of some new 2-substituted-1,8-naphthyridine derivatives. Indian J. Heterocycl. Chem. 28(2), 227–242 (2018).
    • 55. Mogilaiah K, Venkanna Ch, Nageswara Rao A, Ramesh Babu H. Green synthesis, antibacterial and anti-inflammatory activities of 2-(2-substituted [1,8] naphthyridin-3-yl)-5-(substituted-2-thienyl)-1,3,4-oxadiazoles. Indian J. Chem. 56B, 670–676 (2017).
    • 56. Mogilaiah K, Nageswara Rao A, Jyothi S. Environmentally benign synthesis, antibacterial and anti-inflammatory activities of 3-aryl-1-{3-[2-(trifluoromethyl) phenyl][1,8] naphthyridin-2-yl}-1H-4-pyrazolecarbaldehydes. Indian J. Chem. 54B, 1355–1359 (2015).
    • 57. Gençer HK, Levent S, Acar Çevik U, Özkay Y, Ilgın S. New 1,4-dihydro [1,8] naphthyridine derivatives as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett. 27(5), 1162–1168 (2017).
    • 58. Omar FA, Abelrasoul M, Sheha MM, Hassan HY, Ibrahiem YM. Synthesis, antibacterial activity and molecular docking of substituted naphthyridines as potential DNA gyrase inhibitors. ChemistrySelect 3(9), 2604–2612 (2018).
    • 59. Ravi D, Ashok K, Rambabu S, Sakram B, Shyam P. A simple ‘green’ synthesis of novel bis (3-aryl-1,8-naphthyridin-2-yl) sulfanes and 2-(methylthio)-3-aryl-1,8-naphthyridines under microwave irradiation and conventional conditions. Russ. J. Gen. Chem. 88, 1232–1237 (2018).
    • 60. Mubarak S, Zia-ur-rehman M, Jamil N, Zaheer M, Arshad MN, Mohammad AA. Environment friendly synthesis of N'-(1,3-diphenylallylidene)-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazides: crystal structure and their anti-oxidant potential. Chem. Pharm. Bull. 67(11), 1191–1200 (2019).
    • 61. Sonyanaik B, Sakram B, Shyam P, Madhu P, Govan M. Green synthesis and biological evaluation of novel fused 6-(2-chloro-4-fluorophenyl)-9-arylimidazo [1, 2-a][1,8] naphthyridine derivatives catalyzed by DABCO. Russ. J. Gen. Chem. 88, 1495–1501 (2018).
    • 62. Bhasker GV, Satyanarayana GV, Latha A, Laxminarayana E, Thirumala Chary M. Synthesis and antimicrobial activity of novel 1-[3-(1,8-naphthyridin-2-yl) phenyl]-3-arylurea derivatives. Asian J. Chem. 30(4), 771–774 (2018).
    • 63. Swamy JK, Kumar EJ, Kavitha S. Antimicrobial screening of 1,8-naphthyridin-fused ring containing N, O heterocyclic hybrids. Alochana Chakra Journal 9, 535–542 (2020).
    • 64. Sakram B, Kurumanna A, Ravi D, Madhu P, Narsaiah B, Ramesh M. Synthesis of new N-phenyl-3-aryl-1,8-naphthyridin-2-amines and 4-((3-aryl-1,8-naphthyridin-2-yl) amino) phenols and their biological and molecular docking studies. Chem. Data Collect. 25, 100313 (2020).
    • 65. Swamy JK, Kumar EJ, Kavitha S. Screening and biological evaluation of fluorinated 1,8-naphthyridinyl phthalazine-1,4-dithiones. High Technol. Lett. 26, 1246–1249 (2020).
    • 66. Badawneh M, Aljamal J. Synthesis and antitubercular activity of piperidine and morpholine 1,8 naphthyridine analogues. Int. J. Pharm. Pharm. Sci. 8(12), 252–257 (2016). • Research involves increasing antitubercular activity and eliminating toxicity.
    • 67. Markad SD, Kaur P, Kishore Reddy BK et al. Novel lead generation of an anti-tuberculosis agent active against non-replicating mycobacteria: exploring hybridization of pyrazinamide with multiple fragments. Med. Chem. Res. 24, 2986–2992 (2015).
    • 68. Abd Allah OA, El-Saghier AM, Kadry AM, Seleem AA. Synthesis and evaluation of some novel curcumin derivatives as anti-inflammatory agents. Int. J. Pharm. Sci. Rev. Res. 32(1), 87–92 (2015).
    • 69. Fu F, Feng X, Wang JJ et al. Efficient synthesis and evaluation of antitumor activities of novel functionalized 1,8-naphthyridine derivatives. ACS Comb. Sci. 17(1), 24–31 (2015).
    • 70. Jia XD, Wang S, Wang MH et al. Synthesis and in vitro antitumor activity of novel naphthyridinone derivatives. Chin. Chem. Lett. 28(2), 235–239 (2017).
    • 71. Duan Y, Xu S, Xiong H et al. Discovery of novel 2-substituted-4-phenoxypyridine derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett. 28(3), 254–259 (2018).
    • 72. Tang Q, Duan Y, Xiong H et al. Synthesis and antiproliferative activity of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing the 1,8-naphthyridin-2-one moiety. Eur. J. Med. Chem. 158, 201–213 (2018).
    • 73. El-Hadidy SA, Selim YA. New synthetic approaches for cytotoxic activity of novel 1,8-naphthyridine derivatives. J. Heterocycl. Chem. 55(1), 103–114 (2018).
    • 74. Al-Romaizan AN, Jaber TS, Ahmed NS. Novel 1,8-naphthyridine derivatives: design, synthesis and in vitro screening of their cytotoxic activity against MCF7 cell line. Open Chem. 17(1), 943–954 (2019).
    • 75. Abu-Melha S. Synthesis and biological evaluation of some novel 1,8-naphthyridine derivatives. Acta Chim. Slov. 64(4), 919–930 (2017).
    • 76. Bardasov IN, Alekseeva AY, Ershov OV, Mar'yasov MA. Antiproliferative activity of N-substituted 2, 4-diamino-5-Aryl-5,6,7,8,9,10-hexahydrobenzo [B][1,8] naphthyridine-3-carbonitriles. Pharm. Chem. J. 54, 459–461 (2020).
    • 77. Sudharshan Reddy S, Swamy JK, Kumar EJ, Kavitha S. In vitro anti-cancer evaluation and molecular modelling studies of 1,8-naphthyridine derivatives. High Technol. Lett. 26, 1163–1168 (2020).
    • 78. Xueyan H, Luo H, Zhang M et al. Synthesis and biological evaluation of 3-(1,3,4-oxadiazol-2-yl)-1,8-naphthyridin-4(1H)-ones as cisplatin sensitizers. MedChemComm. 9(11), 1949–1960 (2018). • Evaluates cisplatin sensitization activity in addition to antitumor activity.
    • 79. Wang H, Wang S, Cheng L et al. Discovery of imidazo [1,2-α][1,8] naphthyridine derivatives as potential HCV entry inhibitor. ACS Med. Chem. Lett. 6(9), 977–981 (2015).
    • 80. Dhar AK, Mahesh R, Jindal A, Bhatt S. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: novel 5-HT3 receptor antagonists with antidepressant-like activity. Arch. Pharm. Chem. Life Sci. 348(1), 34–45 (2015).
    • 81. Husain A, Varshney MM, Parcha V, Ahmad A, Khan SA. Nalidixic acid Schiff bases: synthesis and biological evaluation. Lett. Drug Des. Discov. 15(1), 103–111 (2018).
    • 82. Ramos E, Romero A, Egea J, Marco-Contelles J, Del Pino J, De Los Riós C. Analysis of gene expression profiles of CR80, a neuroprotective 1,8-naphthyridine. Future Med. Chem. 10(11), 1289–1300 (2018).
    • 83. Malfitano AM, Laezza C, Bertini S et al. Immunomodulatory properties of 1,2-dihydro-4-hydroxy-2-oxo-1,8-naphthyridine-3-carboxamide derivative. Biochimie 135, 173–180 (2017).
    • 84. Datiane C, Oliveira-tintino DM, Relison S et al. Do 1,8-naphthyridine sulfonamides possess an inhibitory action against Tet (K) and MsrA efflux pumps in multiresistant Staphylococcus aureus strains? Microb. Pathog. 147, 104268 (2020).
    • 85. Yukawa T, Nakahata T, Okamoto R et al. Discovery of 1,8-naphthyridin-2-one derivative as a potent and selective sphingomyelin synthase 2 inhibitor. Bioorg. Med. Chem. 28(7), 115376 (2020). •• Recent, in-depth research on novel drugs for treating sphingomyelin synthase 2-related diseases.
    • 86. Kumar GV, Dilipkumar P. Design, in silico studies, and synthesis of new 1,8-naphthyridine-3-carboxylic acid analogues and evaluation of their H1R antagonism effects. RSC Adv. 10(23), 13907–13921 (2020). •• Commendable research article on antihistaminic effect using in vivo model.
    • 87. U.S. Patent 9,598,407 B2. (2017).
    • 88. U.S. Patent 9,855,255 B1. (2018).
    • 89. U.S. Patent 2017/0368041 A1. (2017).
    • 90. U.S. Patent 2016/0317510 A1. (2016).
    • 91. U.S. Patent 10,239,875 B2. (2019).
    • 92. WO 2020/104436 Al. (2020).
    • 93. WO 2020/084648 A1. (2020).
    • 94. Konishi H, Okamoto K, Ohmori Y et al. An orally available, small-molecule interferon inhibits viral replication. Sci. Rep. 2(1), 259 (2012).
    • 95. Pandey G, Mishra A, Khamrai J. Asymmetric total synthesis of eburnamine and eucophylline: a biomimetic attempt for the total synthesis of leucophyllidine. Org. Lett. 19(12), 3267–3270 (2017).