We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Parasitic sirtuin 2 as an opportunity in drug discovery

    Renan Augusto Gomes

    *Author for correspondence:

    E-mail Address: renan2.gomes@usp.br

    Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brasil

    ,
    Evelin Fornari

    Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brasil

    ,
    Ana Carolina Silva Rocha

    Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brasil

    ,
    Gustavo Luis Tripodi

    Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brasil

    ,
    Flavio da Silva Emery

    Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brasil

    &
    Gustavo Henrique Goulart Trossini

    **Author for correspondence:

    E-mail Address: trossini@usp.br

    Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP, 05508-000, Brasil

    Published Online:https://doi.org/10.4155/fmc-2021-0091

    Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Scotti L, Scotti MT. Neglected diseases – new compounds and treatments. Curr. Med. Chem. 27(5), 659–661 (2020).
    • 2. Hotez PJ. The poverty-related neglected diseases: why basic research matters. PLoS Biol. 15(11), e2004186 (2017).
    • 3. Weng H-B, Chen H-X, Wang M-W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty. 7(1), 67 (2018).
    • 4. Maya JD, Cassels BK, Iturriaga-Vásquez P et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 146(4), 601–620 (2007).
    • 5. Boiani M, Piacenza L, Hernández P et al. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem. Pharmacol. 79(12), 1736–1745 (2010).
    • 6. Babokhov P, Sanyaolu AO, Oyibo WA et al. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog. Glob. Health. 107(5), 242–252 (2013).
    • 7. De Koning PH. The drugs of sleeping sickness: their mechanisms of action and resistance, and a brief history. Trop. Med. Infect. Dis. 5(1), 14 (2020).
    • 8. Lindner AK, Lejon V, Chappuis F et al. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect. Dis. 20(2), e38–e46 (2020).
    • 9. Fairlamb AH, Horn D. Melarsoprol resistance in African trypanosomiasis. Trends Parasitol. 34(6), 481–492 (2018).
    • 10. Thomas J, Baker N, Hutchinson S et al. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis. 12(11), e0006980 (2018).
    • 11. Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br. J. Pharmacol. 152(8), 1155–1171 (2007).
    • 12. Priotto G, Kasparian S, Mutombo W et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet. 374(9683), 56–64 (2009).
    • 13. Taylor WRJ, Thriemer K, von Seidlein L et al. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. Lancet. 394(10202), 929–938 (2019).
    • 14. Ocan M, Akena D, Nsobya S et al. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar. J. 18(1), 76 (2019).
    • 15. Wicht KJ, Mok S, Fidock DA. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol. 74, 431–454 (2020).
    • 16. Kimutai R, Musa AM, Njoroge S et al. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in eastern Africa: results from a pharmacovigilance programme. Clin. Drug Investig. 37(3), 259–272 (2017).
    • 17. Frézard F, Demicheli C, Ribeiro RR. Pentavalent antimonials: new perspectives for old drugs. Molecules. 14(7), 2317–2336 (2009).
    • 18. Hendrickx S, Caljon G, Maes L. Need for sustainable approaches in antileishmanial drug discovery. Parasitol. Res. 118(10), 2743–2752 (2019).
    • 19. Religa AA, Waters AP. Sirtuins of parasitic protozoa: in search of function (s). Mol. Biochem. Parasitol. 185(2), 71–88 (2012).
    • 20. Carafa V, Rotili D, Forgione M et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin. Epigenetics. 8(1), 61 (2016).
    • 21. Ali I, Conrad RJ, Verdin E, Ott M. Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem. Rev. 118(3), 1216–1252 (2018). •• Authors explain in detail the mechanism of catalysed deacetilation performed by sirtuins.
    • 22. McIntyre RL, Daniels EG, Molenaars M et al. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol. Med. 11(9), e9854 (2019).
    • 23. Hu F, Sun X, Li G et al. Inhibition of SIRT2 limits tumour angiogenesis via inactivation of the STAT3/VEGFA signalling pathway. Cell Death Dis. 10(1), 1–14 (2018).
    • 24. Zhou S, Tang X, Chen H-Z. Sirtuins and insulin resistance. Front. Endocrinol. (Lausanne). 9, 748 (2018).
    • 25. Zhang Y, Anoopkumar-Dukie S, Arora D, Davey AK. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur. J. Pharmacol. 867, 172847 (2020).
    • 26. Singh P, Hanson PS, Morris CM. Sirtuin-2 protects neural cells from oxidative stress and is elevated in neurodegeneration. Park. Dis. 2017, (2017).
    • 27. Tang X, Chen X-F, Wang N-Y et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 136(21), 2051–2067 (2017).
    • 28. Mei Z, Wang H, Hu Y, Xiong L. CSN6 aggravates Ang II-induced cardiomyocyte hypertrophy via inhibiting SIRT2. Exp. Cell Res. 396(1), 112245 (2020).
    • 29. Jin J, He B, Zhang X, Lin H, Wang Y. SIRT2 reverses 4-oxononanoyl lysine modification on histones. J. Am. Chem. Soc. 138(38), 12304–12307 (2016).
    • 30. Sarikhani M, Mishra S, Desingu PA et al. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH 2-terminal kinase. Cell Death Differ. 25(9), 1638–1656 (2018).
    • 31. Zhou W, Ni TK, Wronski A et al. The SIRT2 deacetylase stabilizes slug to control malignancy of basal-like breast cancer. Cell Rep. 17(5), 1302–1317 (2016).
    • 32. Kozako T, Mellini P, Ohsugi T et al. Novel small molecule SIRT2 inhibitors induce cell death in leukemic cell lines. BMC Cancer. 18(1), 1–10 (2018).
    • 33. Quan S, Principe DR, Dean AE et al. Loss of Sirt2 increases and prolongs a caerulein-induced pancreatitis permissive phenotype and induces spontaneous oncogenic Kras mutations in mice. Sci. Rep. 8(1), 1–15 (2018).
    • 34. Yahiaoui B, Taibi A, Ouaissi A. A Leishmania major protein with extensive homology to silent information regulator 2 of Saccharomyces cerevisiae. Gene. 169(1), 115–118 (1996).
    • 35. Wyllie S, Brand S, Thomas M et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc. Natl. Acad. Sci. 116(19), 9318–9323 (2019).
    • 36. Abeijon C, Alves F, Monnerat S et al. Development of a multiplexed assay for detection of Leishmania donovani and Leishmania infantum protein biomarkers in urine samples of patients with visceral leishmaniasis. J. Clin. Microbiol. 57(5), (2019).
    • 37. Ponte-Sucre A, Gamarro F, Dujardin J-C et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl. Trop. Dis. 11(12), e0006052 (2017).
    • 38. Borsari C, Jiménez-Antón MD, Eick J et al. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur. J. Med. Chem. 183, 111676 (2019).
    • 39. Mittal N, Muthuswami R, Madhubala R. The mitochondrial SIR2 related protein 2 (SIR2RP2) impacts Leishmania donovani growth and infectivity. PLoS Negl. Trop. Dis. 11(5), e0005590 (2017).
    • 40. Ronin C, Costa DM, Tavares J et al. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: implications to protein function and drug design. PLoS ONE 13(3), e0193602 (2018).
    • 41. Tavares J, Ouaissi A, Santarém N et al. The Leishmania infantum cytosolic SIR2-related protein 1 (LiSIR2RP1) is an NAD+-dependent deacetylase and ADP-ribosyltransferase. Biochem. J. 415(3), 377–386 (2008).
    • 42. Vergnes B, Gazanion E, Grentzinger T. Functional divergence of SIR2 orthologs between trypanosomatid parasites. Mol. Biochem. Parasitol. 207(2), 96–101 (2016).
    • 43. Kelly JM, Taylor MC, Horn D et al. Inhibitors of human histone deacetylase with potent activity against the African trypanosome Trypanosoma brucei. Bioorg. Med. Chem. Lett. 22(5), 1886–1890 (2012).
    • 44. Ponte-Sucre A. An overview of Trypanosoma brucei infections: an intense host–parasite interaction. Front. Microbiol. 7, 2126 (2016).
    • 45. Alsford S, Kawahara T, Isamah C, Horn D. A sirtuin in the African trypanosome is involved in both DNA repair and telomeric gene silencing but is not required for antigenic variation. Mol. Microbiol. (2007).
    • 46. Ritagliati C, Alonso VL, Manarin R et al. Overexpression of cytoplasmic Tc SIR2RP1 and mitochondrial Tc SIR2RP3 impacts on Trypanosoma cruzi ©. PLoS Negl Trop Dis. 9(4), e0003725 (2015).
    • 47. Gaspar L, Coron RP, KongThoo Lin P et al. Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease. PLoS Negl. Trop. Dis. 12(1), e0006180 (2018).
    • 48. Moretti NS, da Silva Augusto L, Clemente TM et al. Characterization of Trypanosoma cruzi sirtuins as possible drug targets for Chagas disease. Antimicrob. Agents Chemother. 59(8), 4669–4679 (2015).
    • 49. Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23(8), 917 (2017).
    • 50. Zhang X, Alexander N, Leonardi I, Mason C, Kirkman LA, Deitsch KW. Rapid antigen diversification through mitotic recombination in the human malaria parasite Plasmodium falciparum. PLoS Biol. 17(5), e3000271 (2019).
    • 51. Duraisingh MT, Voss TS, Marty AJ et al. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell. 121(1), 13–24 (2005).
    • 52. Coleman BI, Skillman KM, Jiang RHY et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe. 16(2), 177–186 (2014).
    • 53. da Silva VBR, Campos BRKL, de Oliveira JF, Decout J-L, de Lima M do CA. Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine. Bioorg. Med. Chem. 25(13), 3259–3277 (2017).
    • 54. da Paixão Siqueira L, Fontes DAF, Aguilera CSB et al. Schistosomiasis: drugs used and treatment strategies. Acta Trop. 176, 179–187 (2017).
    • 55. Lancelot J, Caby S, Dubois-Abdesselem F et al. Schistosoma mansoni sirtuins: characterization and potential as chemotherapeutic targets. PLoS Negl Trop Dis. 7(9), e2428 (2013).
    • 56. Monaldi D, Rotili D, Lancelot J et al. Structure–reactivity relationships on substrates and inhibitors of the lysine deacylase sirtuin 2 from Schistosoma mansoni (Sm Sirt2). J. Med. Chem. 62(19), 8733–8759 (2019).
    • 57. Mancio-Silva L, Lopez-Rubio JJ, Claes A, Scherf A. Sir2a regulates rDNA transcription and multiplication rate in the human malaria parasite Plasmodium falciparum. Nat. Commun. 4(1), 1–6 (2013).
    • 58. Lancelot J, Cabezas-Cruz A, Caby S et al. Schistosome sirtuins as drug targets. Future Med. Chem. 7(6), 765–782 (2015).
    • 59. Grozinger CM, Chao ED, Blackwell HE et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276(42), 38837–38843 (2001).
    • 60. Heltweg B, Gatbonton T, Schuler AD et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66(8), 4368–4377 (2006).
    • 61. Lara E, Mai A, Calvanese V et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene. 28(6), 781–791 (2009).
    • 62. Brana MF, Ramos A. Naphthalimides as anticancer agents: synthesis and biological activity. Curr. Med. Chem. Agents. 1(3), 237–255 (2001).
    • 63. Hailu GS, Robaa D, Forgione M et al. Lysine deacetylase inhibitors in parasites: past, present, and future perspectives. J. Med. Chem. 60(12), 4780–4804 (2017). •• A complete and extensive review article about lysine deacetilase inhibitors for parasitic diseases.
    • 64. Mai A, Massa S, Lavu S et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 48(24), 7789–7795 (2005).
    • 65. Olaharski AJ, Rine J, Marshall BL et al. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet. 1(6), e77 (2005).
    • 66. Dadashpour S, Emami S. Indole in the target-based design of anticancer agents: a versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 150, 9–29 (2018).
    • 67. Bedalov A, Gatbonton T, Irvine WP et al. Identification of a small molecule inhibitor of Sir2p. Proc. Natl Acad. Sci. 98(26), 15113–15118 (2001).
    • 68. Zhang Y, Au Q, Zhang M et al. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem. Biophys. Res. Commun. 386(4), 729–733 (2009).
    • 69. Mellini P, Carafa V, Di Rienzo B et al. Carprofen analogues as sirtuin inhibitors: enzyme and cellular studies. ChemMedChem. 7(11), 1905–1908 (2012).
    • 70. Disch JS, Evindar G, Chiu CH et al. Discovery of thieno [3, 2-d] pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J. Med. Chem. 56(9), 3666–3679 (2013).
    • 71. Gertz M, Fischer F, Nguyen GTT et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc. Natl Acad. Sci. 110(30), E2772–E2781 (2013). •• Discovery of Ex-527, an uncompetitive/non-competitive inhibitor of Sir2 of Thermotoga maritima in relation to peptide substrate and NAD+, respectively.
    • 72. Matutino Bastos T, Mannochio Russo H, Silvio Moretti N et al. Chemical constituents of Anacardium occidentale as inhibitors of Trypanosoma cruzi sirtuins. Molecules. 24(7), 1299 (2019).
    • 73. Matutino Bastos T, Botelho Pereira Soares M, Haddad Franco C et al. Identification of inhibitors to Trypanosoma cruzi sirtuins based on compounds developed to human enzymes. Int. J. Mol. Sci. 21(10), 3659 (2020). • In vitro tests of Sir2 inhibitors in combination with benznidazole against T. cruzi.
    • 74. Garcia-Castro M, Zimmermann S, Sankar MG, Kumar K. Scaffold diversity synthesis and its application in probe and drug discovery. Angew. Chemie Int. Ed. 55(27), 7586–7605 (2016).
    • 75. Feldman JL, Peterson CL. Yeast sirtuin family members maintain transcription homeostasis to ensure genome stability. Cell Rep. 27(10), 2978–2989 (2019).
    • 76. Wang Y, Zhang H, Gigant B et al. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J. 283(1), 102–111 (2016).
    • 77. Miana GE, Ribone SR, Vera DMA, Sánchez-Moreno M, Mazzieri MR, Quevedo MA. Design, synthesis and molecular docking studies of novel N-arylsulfonyl-benzimidazoles with anti Trypanosoma cruzi activity. Eur. J. Med. Chem. 165, 1–10 (2019).
    • 78. Palma LC, Ferreira LFGR, Petersen AL de OA et al. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci. Rep. 9(1), 1–9 (2019). • Successful application of in silico techniques in combination with in vitro validation for discovery of potent and selective antimicrobials.
    • 79. Madeira F, Park YM, Lee J et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47(W1), W636–W641 (2019).
    • 80. Blaazer AR, Singh AK, De Heuvel E et al. Targeting a subpocket in Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) enables the structure-based discovery of selective inhibitors with trypanocidal activity. J. Med. Chem. 61(9), 3870–3888 (2018).
    • 81. Trapero A, Pacitto A, Singh V et al. Fragment-based approach to targeting Inosine-5′-monophosphate dehydrogenase (IMPDH) from Mycobacterium tuberculosis. J. Med. Chem. 61(7), 2806–2822 (2018).
    • 82. Whitehouse AJ, Thomas SE, Brown KP et al. Development of inhibitors against Mycobacterium abscessus tRNA (m1G37) methyltransferase (TrmD) using fragment-based approaches. J. Med. Chem. 62(15), 7210–7232 (2019).
    • 83. Penzo M, de Las Heras-Dueña L, Mata-Cantero L et al. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci. Rep. 9(1), 1–13 (2019).
    • 84. Durieu E, Prina E, Leclercq O et al. From drug screening to target deconvolution: a target-based drug discovery pipeline using Leishmania casein kinase 1 isoform 2 to identify compounds with antileishmanial activity. Antimicrob. Agents Chemother. 60(5), 2822–2833 (2016).
    • 85. Harupa A, De Las Heras L, Colmenarejo G et al. Identification of selective inhibitors of Plasmodium N-myristoyltransferase by high-throughput screening. J. Med. Chem. 63(2), 591–600 (2019).
    • 86. Delves MJ, Miguel-Blanco C, Matthews H et al. A high throughput screen for next-generation leads targeting malaria parasite transmission. Nat. Commun. 9(1), 1–13 (2018).
    • 87. Lawson M, Uciechowska U, Schemies J et al. Inhibitors to understand molecular mechanisms of NAD+-dependent deacetylases (sirtuins). Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 1799(10–12), 726–739 (2010).
    • 88. Yoon YK, Ali MA, Wei AC et al. Synthesis and evaluation of novel benzimidazole derivatives as sirtuin inhibitors with antitumor activities. Bioorg. Med. Chem. 22(2), 703–710 (2014).
    • 89. Mahajan SS, Scian M, Sripathy S et al. Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors. J. Med. Chem. 57(8), 3283–3294 (2014).
    • 90. Yoon YK, Ali MA, Wei AC et al. Benzimidazoles as new scaffold of sirtuin inhibitors: green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties. Eur. J. Med. Chem. 83, 448–454 (2014).
    • 91. Carrillo AK, Guiguemde WA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg. Med. Chem. 23(16), 5151–5155 (2015).
    • 92. Filardy AA, Guimarães-Pinto K, Nunes MP et al. Human kinetoplastid protozoan infections: where are we going next? Front. Immunol. 9, 1493 (2018).
    • 93. Zuma AA, de Souza W. Histone deacetylases as targets for antitrypanosomal drugs. Futur. Sci. OA. 4(8), FSO325 (2018).