We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Sulfonamide-salicylaldehyde imines active against methicillin- and trimethoprim/sulfonamide-resistant Staphylococci

    Martin Krátký

    *Author for correspondence: Tel.: +420 495 067 343;

    E-mail Address: martin.kratky@faf.cuni.cz

    Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    Klára Konečná

    Department of Biological & Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    Jiří Janoušek

    Department of Pharmacology & Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    Ondřej Janďourek

    Department of Biological & Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    Jana Maixnerová

    Department of Pharmacology & Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    Sára Kalivodová

    Department of Pharmacology & Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    ,
    František Trejtnar

    Department of Pharmacology & Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    &
    Jarmila Vinšová

    Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského, 1203, Hradec Králové, 500 05, Czech Republic

    Published Online:https://doi.org/10.4155/fmc-2021-0169

    Background: Increasing resistance has resulted in an urgent need for new antimicrobial drugs. A systematic me-too approach was chosen to modify clinically used sulfonamides to obtain their imines. Methods & results: Twenty-five compounds were synthesized and evaluated for their antibacterial activity. The most active compounds were also investigated against methicillin- and trimethoprim/sulfamethoxazole (SMX)-resistant Gram-positive species. Staphylococci shared the highest susceptibility including resistant strains with minimum inhibitory concentrations from 3.91 μM (≥2.39 μg ml-1). Crucially, the compounds inhibit MRSA and trimethoprim/SMX-resistant Staphylococci without any cross-resistance. Modification of parent sulfonamides turned a bacteriostatic effect into a bactericidal effect. Toxicity for HepG2 and hemolytic properties were also determined. Conclusions: The presence of a dihalogenated salicylidene moiety is required for optimal activity. Based on toxicity, promising derivatives for further investigation were identified.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Khan FA, Mushtaq S, Naz S et al. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem. 22(8), 818–830 (2018). •• Concise review summarizing the versatile biological activity and potential applications of sulfonamide derivatives.
    • 2. Ameen SM, Drancourt M. In Vitro Susceptibility of Mycobacterium tuberculosis to trimethoprim and sulfonamides in France. Antimicrob. Agents Chemother. 57(12), 6370–6371 (2013). • Initiated systematic research of antitubercular activity of antibacterial sulfonamides, which had previously been abandoned for this use.
    • 3. Ameen SM, Drancourt M. In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulfonamides. Int. J. Antimicrob. Agents 42(3), 281–282 (2013).
    • 4. Bharath Y, Alugubelli GR, Sreenivasulu R, Rao MVB. Design, synthesis of novel oxazolidino-amides/sulfonamides conjugates and their impact on antibacterial activity. Chem. Pap. 72(2), 457–468 (2018).
    • 5. Konda S, Raparthi S, Bhaskar K et al. Synthesis and antimicrobial activity of novel benzoxazine sulfonamide derivatives. Bioorg. Med. Chem. Lett. 25(7), 1643–1646 (2015).
    • 6. Huedo P, Kumar VP, Horgan C et al. Sulfonamide-based diffusible signal factor analogs interfere with quorum sensing in Stenotrophomonas maltophilia and Burkholderia cepacia. Future Med. Chem. 11(13), 1565–1582 (2019).
    • 7. Bungard CJ, Williams PD, Schulz J et al. Design and synthesis of piperazine sulfonamide cores leading to highly potent HIV-1 protease inhibitors. ACS Med. Chem. Lett. 8(12), 1292–1297 (2017).
    • 8. Lal J, Gupta SK, Thavaselvam D, Agarwal DD. Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Eur. J. Med. Chem. 64, 579–588 (2013). •• Demonstrates that a combination of antimicrobial sulfonamides with another bioactive scaffold (curcumin) connected via imine bond is able to overcome bacterial resistance to these sulfonamides.
    • 9. Kratky M, Mandikova J, Trejtnar F, Buchta V, Stolarikova J, Vinsova J. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones. Chem. Pap. 69(8), 1108–1117 (2015).
    • 10. Chohan ZH, Youssoufi MH, Jarrahpour A, Hadda TB. Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: indolenyl sulfonamide derivatives. Eur. J. Med. Chem. 45(3), 1189–1199 (2010).
    • 11. da Silva CM, da Silva DL, Modolo LV et al. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2(1), 1–8 (2011). • Overview of the biological activity of imines (Schiff bases) focusing on antimicrobial properties.
    • 12. Kratky M, Vinsova J, Volkova M, Buchta V, Trejtnar F, Stolarikova J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 50, 433–440 (2012). •• Reports broad-spectral antimicrobial activity (mycobacteria and Gram-positive cocci including MRSA) of mutual sulfonamide-salicylic derivatives.
    • 13. Kratky M, Dzurkova M, Janousek J et al. Sulfadiazine salicylaldehyde-based Schiff bases: synthesis, antimicrobial activity and cytotoxicity. Molecules 22(9), 1573 (2017).
    • 14. Mondal S, Mandal SM, Mondal TK, Sinha C. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. J. Mol. Struct. 1127, 557–567 (2017).
    • 15. Aronson JK, Green AR. Me-too pharmaceutical products: history, definitions, examples, and relevance to drug shortages and essential medicines lists. Br. J. Clin. Pharmacol. 86(11), 2114–2122 (2020).
    • 16. Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32(11), 1608–1614 (2001).
    • 17. Kaye KS, Gales AC, Dubourg G. Old antibiotics for multidrug-resistant pathogens: from in vitro activity to clinical outcomes. Int. J. Antimicrob. Agents. 49(5), 542–548 (2017). • Addresses the resurrection of old and well-known drugs for the treatment of infections caused by drug-resistant bacteria, including sulfamethoxazole/trimethoprim combination.
    • 18. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2), doi:10.1128/microbiolspec.VMBF-0016-2015 (2016).
    • 19. Abdel-Aziz HAK, Eldehna WM, Fares M, Elsaman T, Abdel-Aziz MM, Soliman DH. Synthesis, in vitro and in silico studies of some novel 5-nitrofuran-2-yl hydrazones as antimicrobial and antitubercular agents. Biol. Pharm. Bull. 38(10), 1617–1630 (2015).
    • 20. Subashini A, Hemamalini M, Muthiah PT, Bocelli G, Cantoni A. Synthesis and crystal structure of a new Schiff base 4-[(2-hydroxy-benzylidene)-amino]-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide. J. Chem. Crystallogr. 39(2), 112–116 (2009).
    • 21. Chohan ZH, Shad HA, Toupet L, Ben Hadda T, Akkurt M. Structure of a new bioactive agent containing combined antibacterial and antifungal pharmacophore sites: 4-{[(E)-(5-Bromo-2-hydroxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide. J. Chem. Crystallogr. 41(2), 159–162 (2011).
    • 22. Rama I, Selvameena R. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole. J. Chem. Sci. 127(4), 671–678 (2015).
    • 23. Tsukamoto T, Yuhi K. Studies on halogenosalicylaldehyde. I. Halogenosalicylaldehyde as reagent for primary amines. Yakugaku Zasshi 78, 706–709 (1958).
    • 24. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9, 1–7 (2003).
    • 25. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf
    • 26. Krátký M, Konečná K, Brokešová K, Maixnerová J, Trejtnar F, Vinšová J. Optimizing the structure of (salicylideneamino)benzoic acids: towards selective antifungal and anti-staphylococcal agents. Eur. J. Pharm. Sci. 159, 105732 (2021).
    • 27. O'Donnell JA, Gelone SP, Safdar A. 37 – Topical Antibacterials. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (8th Edition). Bennett JEDolin RBlaser MJ (Eds). Elsevier Inc, PA, USA, 452–462 (2015).
    • 28. Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6(6), a027029 (2016).
    • 29. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7(4), 493–512 (2015).
    • 30. Becerra MC, Guinazu N, Hergert LY et al. In vitro activity of N-benzenesulfonylbenzotriazole on Trypanosoma cruzi epimastigote and trypomastigote forms. Exp. Parasitol. 131(1), 57–62 (2012).
    • 31. Salahuddin A, Inam A, van Zyl RL et al. Synthesis and evaluation of 7-chloro-4-(piperazin-1-yl)quinoline-sulfonamide as hybrid antiprotozoal agents. Bioorg. Med. Chem. 21(11), 3080–3089 (2013).
    • 32. Hilliard JJ, Goldschmidt RM, Licata L, Baum EZ, Bush K. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob. Agents Chemother. 43(7), 1693–1699 (1999).