We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Versatile tools of synthetic biology applied to drug discovery and production

    Nikolet Pavlova

    Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski,” 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria

    ,
    Georgi Y Miloshev

    Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski,” 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria

    ,
    Antoniya V Georgieva

    Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski,” 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria

    ,
    Martina Traykovska

    Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski,” 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria

    &
    Robert Penchovsky

    *Author for correspondence: Tel.: +359 2816 7340;

    E-mail Address: robert.penchovsky@hotmail.com

    Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski,” 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria

    Published Online:https://doi.org/10.4155/fmc-2022-0063

    Although synthetic biology is an emerging research field, which has come to prominence within the last decade, it already has many practical applications. Its applications cover the areas of pharmaceutical biotechnology and drug discovery, bringing essential novel methods and strategies such as metabolic engineering, reprogramming the cell fate, drug production in genetically modified organisms, molecular glues, functional nucleic acids and genome editing. This review discusses the main avenues for synthetic biology application in pharmaceutical biotechnology. The authors believe that synthetic biology will reshape drug development and drug production to a similar extent as the advances in organic chemical synthesis in the 20th century. Therefore, synthetic biology already plays an essential role in pharmaceutical, biotechnology, which is the main focus of this review.

    References

    • 1. Traykovska M, Miedema S, Penchovsky R. Clinical trials of functional nucleic acids: antisense oligonucleotides and aptamers. Int. Journal of Biomedical and Clinical Engineering (IJBCE) 7(2), 46–60 (2018).
    • 2. Penchovsky R, Birch-Hirschfeld E, McCaskill JS. End-specific covalent photo-dependent immobilisation of synthetic DNA to paramagnetic beads. Nucleic Acids Res. 28(22), e98 (2000).
    • 3. Penchovsky R. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics. ACS Synth. Biol. 1(10), 471–482 (2012).
    • 4. Chappell J, Watters KE, Takahashi MK, Lucks JB. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr. Opin. Chem. Biol. 28, 47–56 (2015).
    • 5. Hollywood KA, Schmidt K, Takano E, Breitling R. Metabolomics tools for the synthetic biology of natural products. Curr. Opin. Biotechnol. 54, 114–120 (2018).
    • 6. Liu D, Pakrasi HB. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microb. Cell Fact. 17(1), 48 (2018).
    • 7. MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv. Drug Deliv. Rev. 105(Pt A), 20–34 (2016).
    • 8. Alnasser SM. Review on mechanistic strategy of gene therapy in the treatment of disease. Gene 769, 145246 (2021).
    • 9. Kopka J, Fernie AR. Editorial overview: plant synthetic and systems biology. Curr. Opin. Biotechnol. 49, viii–xi (2018).
    • 10. Jagadevan S, Banerjee A, Banerjee C et al. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnology for Biofuels 11, 185 (2018).
    • 11. Cantelli CR, Dassonville-Klimpt A, Sonnet P. A review of current and promising nontuberculous mycobacteria antibiotics. Future Med. Chem. 13(16), 1367–1395 (2021).
    • 12. Kaloudas D, Pavlova N, Penchovsky R. Lignocellulose, algal biomass, biofuels and biohydrogen: a review. Envt. Chem. Lett. 19(4), 2809–2824 (2021).
    • 13. Buddingh BC, van Hest JCM. Artificial cells: synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res. 50(4), 769–777 (2017).
    • 14. Elani Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angewandte Chemie International Edition 60(11), 5602–5611 (2021).
    • 15. Penchovsky R, Breaker RR. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23(11), 1424–1433 (2005).
    • 16. Takahashi MK, Tan X, Dy AJ et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9(1), 3347 (2018).
    • 17. Liu C. Liability for transboundary damage of genetically modified organisms: existing patterns and application. Beijing Law Review 12(1), 11 (2021).
    • 18. Deckers M, Deforce D, Fraiture MA, Roosens NHC. Genetically modified micro-organisms for industrial food enzyme production: an overview. Foods 9(3), 326–346 (2020).
    • 19. Penchovsky R, Stoilova CC. Riboswitch-based antibacterial drug discovery using high-throughput screening methods. Expert Opin. Drug Discov. 8(1), 65–82 (2013).
    • 20. Deepika M, Sumathy J. Production of BioBricks using microbes. Int. J. Curr. Res. Multi. (IJCRM) 5(1), 13–27 (2020).
    • 21. Staal J, Alci K, Schamphelaire WD, Vanhoucke M, Beyaert R. Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site. BioTechniques 66(6), 254–259 (2019).
    • 22. Van der Weyden L, Jonkers J, Adams DJ. The use of CRISPR/CAS9-based gene editing strategies to explore cancer gene function in mice. Curr. Op. Gen. & Dev. 66, 57–62 (2021).
    • 23. Liang Z, Qin Z, Riker AI, Xi Y. CRISPR/CAS9 ablating viral microRNA promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus. Biochem. Biophys. Res. Commun. 533(4), 1400–1405 (2020).
    • 24. Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. CRISPR-CAS9 genome editing delivery systems for targeted cancer therapy. Life Sci. 267, 118969 (2021).
    • 25. Hartz P, Gehl M, Konig L, Bernhardt R, Hannemann F. Development and application of a highly efficient CRISPR-CAS9 system for genome engineering in Bacillus megaterium. J. Biotechnol. (2021).
    • 26. Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-CAS9: a preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 29(2), 571–586 (2021).
    • 27. Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-CAS9: a powerful tool to efficiently engineer Saccharomyces cerevisiae. Life (Basel) 11(1), 1–16 (2020).
    • 28. Kumar SA, Kumar TDA, Beeraka NM et al. Machine learning and deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future Med. Chem. 14(4), 245–270 (2022).
    • 29. Dwivedi A, Kumar K, Verma PK. Chapter 4 – constructing synthetic pathways in plants: strategies and tools. In: Current Developments in Biotechnology and Bioengineering. Singh SPPandey ADu GKumar S (Eds). Elsevier, USA, 56–77 (2019).
    • 30. Gandhi SG. Chapter 8 – synthetic biology for production of commercially important natural product small molecules. In: Current Developments in Biotechnology and Bioengineering. Singh SPPandey ADu GKumar S (Eds). Elsevier, USA, 120–138 (2019).
    • 31. An N, Liu S, Ding H, Wang H, Zhang L, Alterovitz G. A data-driven method for BioBrick quality assessment. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). 20–30 (2021).
    • 32. Paul PEVViswanath B (Eds). Chapter 22 – Recent trends in the development of high-performance microbial cell factories for production of bio-based chemicals. In :Recent Developments in Applied Microbiology and Biochemistry. Academic Press, USA, 241–246 (2021).
    • 33. Johnson J, Harman VM, Franco C et al. Synthetic biology meets proteomics: construction of à la carte QconCATs for absolute protein quantification. bioRxiv 2021.2004.2013.439592 (2021).
    • 34. Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLOS ONE 10(4), e0124459 (2015).
    • 35. DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11(7), 465–471 (2015).
    • 36. Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33(4), 377–383 (2015).
    • 37. Dixit S, Shukla A, Singh V, Upadhyay SK. Engineering of plant metabolic pathway for nutritional improvement. In: Genome Engineering for Crop Improvement. Santosh Kumar Upadhyay (Ed.). USA, 351–379 (2021).
    • 38. Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res. 12(2), 144–170 (2012).
    • 39. Beites T, Mendes M. Chassis optimization as a cornerstone for the application of synthetic biology based strategies in microbial secondary metabolism. Front. Microbiol. 6(906), 1–10 (2015).
    • 40. Liu X, Cheng J, Zhang G et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat. Commun. 9(1), 448 (2018).
    • 41. Alper HS, Avalos JL. Metabolic pathway engineering. Synth. Syst. Biotechnol. 3(1), 1–2 (2018).
    • 42. Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Microb. Cell Fact. 17(1), 76 (2018).
    • 43. Wang H, Liu W, Shi F et al. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. Metab. Eng. 48, 279–287 (2018).
    • 44. Zhao M, Huang D, Zhang X, Koffas MAG, Zhou J, Deng Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab. Eng. 47, 254–262 (2018).
    • 45. Nishimura Y, Matsui T, Ishii J, Kondo A. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Microb. Cell Fact. 17(1), 38 (2018).
    • 46. Ibdah M, Martens S, Gang DR. Biosynthetic pathway and metabolic engineering of plant dihydrochalcones. J. Agric. Food Chem. 66(10), 2273–2280 (2018).
    • 47. Gao C, Wang S, Hu G et al. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol. Bioeng. 115(3), 661–672 (2018).
    • 48. Traykovska M, Popova KB, Penchovsky R. Targeting glmS ribozyme with chimeric antisense oligonucleotides for antibacterial drug development. ACS Synthet. Bio. 10(11), 3167–3176 (2021).
    • 49. Pavlova N, Penchovsky R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin. Ther. Targets 23(7), 631–643 (2019).
    • 50. Traykovska M, Penchovsky R. Engineering antisense oligonucleotides as antibacterial agents that target FMN riboswitches and inhibit the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. ACS Synth. Biol. 1845–1855 (2022).
    • 51. Xiao M, Lai W, Yu H et al. Assembly pathway selection with DNA reaction circuits for programming multiple cell–cell interactions. J. Am. Chem. Soc. 143(9), 3448–3454 (2021).
    • 52. Ding Y, Wu F, Tan C. Synthetic biology: a bridge between artificial and natural cells. Life (Basel) 4(4), 1092–1116 (2014).
    • 53. Lu Y. Cell-free synthetic biology: engineering in an open world. Synth. Syst. Biotechnol. 2(1), 23–27 (2017).
    • 54. Gibson DG, Glass JI, Lartigue C et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987), 52–56 (2010).
    • 55. Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9(1), 1–17 (2017).
    • 56. Glass JI, Merryman C, Wise KS, Hutchison CA 3rd, Smith HO. Minimal cells – real and imagined. Cold Spring Harb. perspect. Biol. 9(12), a023861 (2017).
    • 57. Hutchison CA 3rd, Chuang RY, Noskov VN et al. Design and synthesis of a minimal bacterial genome. Science 351(6280), aad6253 (2016).
    • 58. Luo Z, Yu K, Xie S et al. Compacting a synthetic yeast chromosome arm. Genome Biol. 22(1), 5 (2021).
    • 59. Boeke JD, Church G, Hessel A et al. Genome engineering. The Genome Project-Write. Science 353(6295), 126–127 (2016).
    • 60. Kamatani Y, Okada Y. Two decades after Human Genome Project: do large-genetic studies lead to path of the genomic medicine of complex diseases? J. Hum. Genet. 66(1), 1 (2021).
    • 61. Gates AJ, Gysi DM, Kellis M, Barabasi AL. A wealth of discovery built on the Human Genome Project – by the numbers. Nature 590(7845), 212–215 (2021).
    • 62. Paik YK, Omenn GS, Thongboonkerd V, Marko-Varga G, Hancock WS. Genome-wide proteomics, Chromosome-Centric Human Proteome Project (C-HPP), part II. J. Proteome Res. 13(1), 1–4 (2014).
    • 63. Schindler D. Genetic engineering and synthetic genomics in yeast to understand life and boost biotechnology. Bioengineering (Basel, Switzerland) 7(4), 1–22 (2020).
    • 64. Greene A, Pascarelli K, Broccoli D, Perkins E. Engineering synthetic chromosomes by sequential loading of multiple genomic payloads over 100 kilobase pairs in size. Molecular Therapy - Methods & Clinical Development 13, 463–473 (2019).
    • 65. Kung SH, Lund S, Murarka A, McPhee D, Paddon CJ. Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front. Plant Sci. 9, 87 (2018).
    • 66. Hale V, Keasling JD, Renninger N, Diagana TT. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg. 77(Suppl. 6), S198–S202 (2007).
    • 67. Winzeler EA, Manary MJ. Drug resistance genomics of the antimalarial drug artemisinin. Genome Biol. 15(11), 544 (2014).
    • 68. Lopez C, Saravia C, Gomez A, Hoebeke J, Patarroyo MA. Mechanisms of genetically-based resistance to malaria. Gene 467(1-2), 1–12 (2010).
    • 69. Huang Q, Roessner CA, Croteau R, Scott AI. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9(9), 2237–2242 (2001).
    • 70. Bian G, Yuan Y, Tao H et al. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol. J. 12(4), 1–10 (2017).
    • 71. Kazanov MD, Vitreschak AG, Gelfand MS. Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics 8, 347 (2007).
    • 72. Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochemistry 46(1), 23–34 (2011).
    • 73. Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science 349(6252), 1095–1100 (2015).
    • 74. Nakagawa A, Matsumura E, Koyanagi T et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7, 10390 (2016).
    • 75. Ramesh AM, Kesari V, Rangan L. Characterization of a stearoyl-acyl carrier protein desaturase gene from potential biofuel plant, Pongamia pinnata L. Gene 542(2), 113–121 (2014).
    • 76. Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nature Communications 12(1), 1390 (2021).
    • 77. Voyvodic PL, Bonnet J. Cell-free biosensors for biomedical applications. Curr. Opin. Biomed. Engin. 13, 9–15 (2020).
    • 78. Gräwe A, Dreyer A, Vornholt T et al. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLOS ONE 14(3), e0210940 (2019).
    • 79. Duyen TT, Matsuura H, Ujiie K, Muraoka M, Harada K, Hirata K. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J. Biosci. Bioengin. 123(1), 96–100 (2017).
    • 80. Voyvodic PL, Pandi A, Koch M et al. Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. Nature Comm. 10(1), 1697 (2019).
    • 81. Chen Z, He A, Liu Y, Huang W, Cai Z. Recent development on synthetic biological devices treating bladder cancer. Synth. Syst. Biotechnol. 1(4), 216–220 (2016).
    • 82. Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip. Rev. RNA 5(3), 317–333 (2014).
    • 83. Tay FC, Lim JK, Zhu H, Hin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv. Drug Deliv. Rev. 81, 117–127 (2015).
    • 84. Karig DK. Cell-free synthetic biology for environmental sensing and remediation. Curr. Opin. Biotechnol. 45, 69–75 (2017).
    • 85. Pardee K, Green AA, Takahashi MK et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165(5), 1255–1266 (2016).
    • 86. Pardee K, Green AA, Ferrante T et al. Paper-based synthetic gene networks. Cell 159(4), 940–954 (2014).
    • 87. Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4), 925–939 (2014).
    • 88. Kim HJ, Jeong H, Lee SJ. Synthetic biology for microbial heavy metal biosensors. Analy. Bioanaly. Chem. 410(4), 1191–1203 (2018).
    • 89. Gutiérrez JC, Amaro F, Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front. Microbiol. 6(48), 1–8 (2015).
    • 90. Shetty RS, Deo SK, Liu Y, Daunert S. Fluorescence-based sensing system for copper using genetically engineered living yeast cells. Biotechnol. Bioeng. 88(5), 664–670 (2004).
    • 91. Park JN, Sohn MJ, Oh DB et al. Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl. Environ. Microbiol. 73(19), 5990–6000 (2007).
    • 92. Traykovska M, Popova KB, Penchovsky R. Targeting glmS ribozyme with chimeric antisense oligonucleotides for antibacterial drug development. ACS Synth. Biol. 10(11), 3167–3176 (2021).
    • 93. Kaloudas D, Pavlova N, Penchovsky R. EBWS: essential bioinformatics web services for sequence analyses. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 942–953 (2019).
    • 94. Penchovsky R, Kostova GT. Computational selection and experimental validation of allosteric ribozymes that sense a specific sequence of human telomerase reverse transcriptase mRNAs as universal anticancer therapy agents. Nucleic Acid Ther. 23(6), 408–417 (2013).
    • 95. Penchovsky R. Computational design of allosteric ribozymes as molecular biosensors. Biotechnol. Adv. 32(5), 1015–1027 (2014).
    • 96. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 93, 52–79 (2015).
    • 97. Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J. R. Soc. Interface 13(120), 1–17 (2016).
    • 98. Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat. Rev. Genet. 11(5), 367–379 (2010).
    • 99. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104(27), 11197–11202 (2007).
    • 100. Anderson JC, Clarke EJ, Arkin AP, Voigt CA. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355(4), 619–627 (2006).
    • 101. Krinsky N, Kaduri M, Zinger A et al. Synthetic cells synthesize therapeutic proteins inside tumors. Adv. Healthc. Mater. 7(9), e1701163 (2018).
    • 102. Ghosh N, Kundu LM. Breaker peptides against amyloid-β aggregation: a potential therapeutic strategy for Alzheimer's disease. Future Med. Chem. 13(20), 1767–1794 (2021).
    • 103. Ji L, Zhang F, Zhu L, Jiang J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Inter. J. Bio. Macromol. 170, 459–468 (2021).
    • 104. Majcher MJ, Babar A, Lofts A et al. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J. Control. Rel. 330, 738–752 (2021).
    • 105. Asgari M, Miri T, Soleymani M, Barati A. A novel method for in situ encapsulation of curcumin in magnetite-silica core-shell nanocomposites: a multifunctional platform for controlled drug delivery and magnetic hyperthermia therapy. J. Mol. Liquids 324, 114731 (2021).
    • 106. Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 12(9), 1–29 (2020).
    • 107. Xie Y, Yang Y, He Y et al. Synthetic biology speeds up drug target discovery. Front. Pharmacol. 11, 119 (2020).
    • 108. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).
    • 109. Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2(6), 159–182 (2014).
    • 110. Amidi M, de Raad M, Crommelin DJ, Hennink WE, Mastrobattista E. Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine. Syst. Synth. Biol. 5(1-2), 21–31 (2011).
    • 111. Nissim L, Wu MR, Pery E et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171(5), 1138–1150 e1115 (2017).
    • 112. Thi Nhu Thao T, Labroussaa F, Ebert N et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582(7813), 561–565 (2020).
    • 113. Zhao W. A forum on synthetic biology: meet the great challenges with new technology. National Sci. Rev. 8(1), 1 (2020).
    • 114. Zhang L-C, Zhao H-l, Liu J, He L, Yu R-l, Kang C-M. Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Future Med. Chem. 14(6), 393–405 (2022).
    • 115. Yang X, Duan J, Wu L. Research advances in NQO1-responsive prodrugs and nanocarriers for cancer treatment. Future Med. Chem. 14(5), 363–383 (2022).
    • 116. Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J. Med. Chem. 64(15), 10606–10620 (2021).
    • 117. Li J, Zhao H, Zheng L, An W. Advances in synthetic biology and biosafety governance. Front. Bioeng. Biotechnol. 9, 598087 (2021).
    • 118. Bernstein HS, Srivastava D. Stem cell therapy for cardiac disease. Pediatr. Res. 71(4 Pt 2), 491–499 (2012).
    • 119. Wong SS, Bernstein HS. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen. Med. 5(5), 763–775 (2010).