We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights

    Robert Filler

    † Author for correspondence

    Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.

    &
    Rituparna Saha

    Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.

    Published Online:https://doi.org/10.4155/fmc.09.65

    This perspective explores the origins of both fluorine and medicinal chemistry a century ago and traces the early history of the intersection of these areas and the subsequent roles that fluorine has played in advancing medicinal innovations and diagnoses during the past 60 years. The overview highlights remarkable breakthroughs in many diverse areas of medicinal chemistry, including inter alia, anesthetics, steroidal and nonsteroidal anti-inflammatory drugs, anticancer and antiviral agents, CNS medications, antibacterials and cholesterol biosynthesis inhibitors. The increasing use of fluorine-18-labeled radiotracers in PET for diagnostic imaging of the brain, heart and in oncology is briefly presented. The signature roles of fluorine in medicinal chemistry are now firmly established. The presence of fluorine in pharmaceuticals has had a major impact on a plethora of important medical applications, such as those cited above. Fluorine will very likely continue to contribute significantly by playing multifaceted roles in enhancing future medical advances.

    Bibliography

    • Banks RE, Tatlow JC. In: Fluorine: The First Hundred Years (18861986). Banks RE, Sharp DWA, Tatlow JC (Eds). Elsevier Science Publishing Co., Inc., NY, USA, 93–97 (1986).
    • Midgley T, Henne AL. Organic fluorides as refrigerants. Ind. Eng. Chem.22,542 (1930).
    • Banks RE, Tatlow JC. In: Fluorine: The First Hundred Years (18861986). Banks RE, Sharp DWA, Tatlow JC (Eds). Elsevier Science Publishing Co., Inc., NY, USA, 101–103 (1986).
    • Schmitt R, von Gehren H. J. Prakt. Chem.1,394 (1870).
    • Balz G, Schiemann G. Über aromatische fluorverbindungen, I: ein neues verfahren zu ihrer darstellung. Chem. Ber.1186 (1927).
    • Swarts F. Fluorine derivatives of toluene. Bull. Acad. Roy. Belg.35,375 (1898).
    • McBee ET. Fluorine chemistry. Ind. Eng. Chem.39,236–237__ (1947).
    • Peters RA. Croonian lecture: lethal synthesis. Proc. Roy. Soc. Series B139,143 (1952).
    • Goldman P. The carbon-fluorine bond in compounds of biological interest. Science164,1123–1130 (1969).
    • 10  Smith F. Carbon-Fluorine Compounds. Chemistry, Biochemistry and Biological Activities. A Ciba Foundation Symposium, Elsevier, London, UK (1972).
    • 11  Biochemistry Involving Carbon-Fluorine Bonds. ACS Symposium Series 28, Filler R (Ed.) 1976.
    • 12  Biochemistry of the Elemental Halogens and Inorganic Halides. Kirk KL, Plenum Press, NY, USA (1991).
    • 13  Biochemistry of Halogenated Organic Compounds. Kirk KL, Plenum Press, NY, USA (1991).
    • 14  Kirk KL. Fluorine in biomedicinal chemistry. J. Fluorine Chem.129(9),725–887 (2008).
    • 15  Molecular Modification in Drug Design: Advances in Chemistry Series 45, American Chemical Society (1964).
    • 16  Simons JH. Production of fluorocarbons. J. Electrochem. Soc.95,47 (1949).
    • 17  Yale HL. The trifluoromethyl group in medicinal chemistry. J. Med. Pharm. Chem.1(2),121–133 (1959).
    • 18  Robbins BH. Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J. Pharmacol. Exptl Therapeutics86,197–204 (1946).
    • 19  McBee ET, Filler R. The reaction of 1,2-dichloro-1,1,3,3,3-pentafluoropropane with ethanolic alkali. J. Org. Chem.21(3),370–371 (1956).
    • 20  Suckling CW. Some chemical and physical factors in the development of fluothane. Brit. J. Anesthesia29,466 (1957).
    • 21  Raventós J. The action of fluothane; a new volatile anaesthetic. Brit. J. Pharmacol.11,394–410 (1956).
    • 22  Halpern DF. Recent developments in fluorine substituted volatile anesthetics. In: Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Filler R, Kobayashi Y, Yagupolskii LM (Eds). Elsevier, Amsterdam, The Netherlands, 101–133 (1993).
    • 23  Ferstandig LL. Fluorinated anesthetics. Chemistry of Organic Fluorine Compounds II. A Critical Review. Hudlicky M, Pavlath AE (Eds). American Chemical Society Monograph 187, American Chemical Society, Washington DC, USA, 1133–1137 (1995).
    • 24  Fried J, Sabo EF. Synthesis of 17α -hydroxycorticosterone and its 9α-halo derivatives from 11-epi-17α –hydroxycorticosterone. J. Am. Chem. Soc.75,2273–2274 (1953).
    • 25  Fried J, Sabo EF. 9α-fluoro derivatives of cortisone and hydrocortisone. J. Am. Chem. Soc.76,1455–1456 (1954).
    • 26  Wettstein A. Chemistry of fluorosteroids and their hormonal properties. Reference10,281–301 (1972).
    • 27  Elliott AJ. The role of fluorine in the chemistry of central nervous system agents. Reference22,209–239 (1993).
    • 28  Duschinsky R, Pleven E, Heidelberger C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc.79,4559 (1957).
    • 29  Heidelberger C, Chaudhuri NK, Danneberg P et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature179,663–666 (1957).
    • 30  Filler R. Fluorinated compounds of medicinal interest. Chem. Tech.4,752–757 (1974).
    • 31  Edwards PN. Uses of fluorine in chemotherapy. In: Organofluorine Chemistry, Principles and Commercial Applications. Banks RE, Smart BE, Tatlow JC (Eds). Plenum Press, NY, USA, 501–541 (1994).
    • 32  Hagmann WK. The many roles for fluorine in medicinal chemistry. J. Med. Chem.51(15),4359–4369 (2008).
    • 33  Bergstrom DE, Swartling DJ. Fluorine substituted analogs of nucleic acid components. In: Fluorine-Containing Molecules, Structure, Reactivity, Synthesis, and Applications. Liebman JF, Greenberg A, Dolbier WR Jr (Eds). VCH Publishers, Inc. NY, USA, 259–308 (1988).
    • 34  Hertel LW, Ternansky RJ. Fluorine-containing antiviral and anticancer compounds. Reference22,23–71 (1993).
    • 35  Meng W-D, Qing F-L. fluorinated nucleosides as antiviral and anti-tumor agents. Curr. Top. Med. Chem.6,1499–1528 (2006).
    • 36  Isanbor C, O’Hagan D. Fluorine in medicinal chemistry: a review of anticancer agents. J. Fluorine Chem.127,303–319 (2006).
    • 37  Grever MR et al. Long-term results of the CHOP regimen in stage C chronic lymphocytic leukaemia. Nouv. Rev. Fr. Hematol.30,457 (1988).
    • 38  Montgomery JA. Has the well gone dry? The first Cain memorial award lecture. Cancer Res.42,3911 (1982).
    • 39  Grindey GB, Boder GB, Hertel LW et al. Antitumor activity of 2´,2´-difluorodeoxycytidine (LY188011). Presented at: American Assn. Cancer. Res. 27, Los Angeles, CA, USA, 7–10 May 1986.
    • 40  Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem. Soc. Rev.37,320–330 (2008).
    • 41  Iseki K, Kobayashi Y. Fluorinated vitamin D3 analog with in vivo anticancer activity. In: Biomedical Frontiers of Fluorine Chemistry, Ojima I, McCarthy JR, Welch JT (Eds.). ACS Symposium Series 639, 214–227 (1996).
    • 42  Ojima I et al. Synthesis, biological activity and conformational analysis of fluorine-containing taxoids. Reference42,228–243 (1996).
    • 43  Ojima I, Kuduk SD, Slater JC et al. Use of fluorine in medicinal chemistry and chemical biology of bioactive compounds – a case study on fluorinated taxane anticancer agents. ChemBioChem, Wiley–VCH Verlag, Weinheim, Germany, 5, 628–635 (2004).
    • 44  Kuznetsova L, Pepe A, Ungureanu IM, Pera P, Bernacki RJ, Ojima I. Synthesis and structure–activity relationships of novel 3´-difluoromethyl and 3´-trifluoromethyl-taxoids. J. Fluorine Chem.129,817–828 (2008).
    • 45  Walborsky HM, Baum ME. Chemical effects of the trifluoromethyl group: III. Synthesis of 2-amino-4,4,4-trifluorobutyric acid. J. Org. Chem.21,538 (1956).
    • 46  Loncrini DF, Filler R. Aliphatic Fluoro Amino Acids. Advances in Fluorine Chemistry. Tatlow JC, Peacock RD, Hyman HH, Stacey M (Eds). Butterworths, London, UK, 6, 43–67 (1970).
    • 47  Ojima I. New developments in the synthesis and medicinal applications of fluoroamino acids and peptides. Reference22,241–273 (1993).
    • 48  Ojima I, Kato K, Okabe M, Fuchikami T. Hydroformylation of fluoro olefins, RfCH:CH2, catalyzed by group VIII transition-metal catalysts. Crucial factors for extremely high regioselectivity. J. Am. Chem. Soc.109,7714 (1987).
    • 49  Ojima I, Hirai K, Fujita M, Fuchikami T. New synthetic route to N-acyl-α-amino acids via amidocarbonylation by means of homogeneous binary catalyst systems. J. Organometal. Chem.279,203 (1985).
    • 50  Soloshonok VA. Practical synthesis of enantiopure fluoramino acids of biological interest by asymmetric aldol reactions. Reference42,26–41 (1996).
    • 51  Taguchi T, Shibuya A, Morikawa T. Asymmetric synthesis of functionalized fluorinated cyclopropanes and its application to fluoromethano amino acids. Reference42,73–82 (1996).
    • 52  Kirk KL, Nie J-Y. Fluorinated amino acids in nerve systems. Reference42,312–327 (1996).
    • 53  Cieplak P, Kollman PA, Radomski JP. Molecular design of fluorine-containing peptide mimetics. Reference42,143–156 (1996).
    • 54  Chu DTW. Fluoroquinolone carboxylic acids as antibacterial drugs. Reference22,165–207 (1993).
    • 55  Bonnet-Delpon D. Artemisinin, a target for fluorine chemists: challenging molecule, efficient antimalarial drug. Presented at: Abstracts, Division of Medicinal Chemistry, ACS National Meeting. Boston, MA, USA, 19–23 August 2007.
    • 56  István ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science292,1160–1164 (2001).
    • 57  Annual Reports in Medicinal Chemistry, 33. Bristol JA (Ed.). 328 (1998).
    • 58  Fowler JS. The synthesis and application of F-18 compounds in positron emission tomography. Reference22,309–338 (1993).
    • 59  Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med.27,235 (1986).
    • 60  Arnett CD, Shiue C-Y, Wolf AP. Improved delineation of human dopamine receptors using [18F]-N-methylspiroperidol and PET. J. Neurochem.44,835 (1985).
    • 61  Shiue C-Y, Fowler JS, Wolf AP et al. No-carrier-added fluorine-18-labeled N-methylspiroperidol: synthesis and biodistribution in mice. J. Nucl. Med.27,226 (1986).
    • 62  Ding Y-S, Fowler JS. 18F labeled tracers for positron emission studies in the neurosciences. Reference42,328–343 (1996).
    • 63  Isanbor CI, O’Hagan D. Fluorine in medicinal chemistry: a review of anti-cancer agents. Reference37,315–316 (2006).
    • 64  Sun S, Adejare A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr. Top. Med. Chem.6,1457–1464 (2006).
    • 65  Shah P, Westwell AD. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem.22(5),536–538 (2007).
    • 66  Purser S, Moore PR, Swallow S et al. Fluorine in medicinal chemistry. Chem. Soc. Rev.37,328–329 (2008).
    • 67  Cobb SL, Murphy CD. 19F NMR applications in chemical biology. J. Fluorine Chem.130,132–143 (2009).
    • 68  Stinson SC. Chiral drugs. Chem. Eng. News44, October 9, 1995.
    • 69  Ramachandran PV. Asymmetric Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions. ACS Symposium Series 746. American Chemical Society (2000).
    • 70  Soloshonok VA. Biomimetic reductive amination of fluoro aldehydes and ketones via [1,3]-proton shift reaction. Reference71,26–41 (1996).
    • 71  Soloshonok VA. Biominetic, redundancy agent – free reductions amination of fluorocarbonyl compounds: practical asymmetric synthesis of enantiopure fluoroamines and amino acids. Reference71,74–83 (2000).
    • 72  Ojima I, Inoue T, Chakravarty S. Synthesis of enantiopure fluorine-containing taxoids and their use as anticancer agents as well as probes for biomedical problems. Reference71,158–181 (2000).
    • 73  Kirk KL, Herbert B, Lu SF, Jayachandran B et al. Chemical and biochemical approaches to the enantiomers of chiral fluorinated catecholamines and amino acids. Reference71,194–209 (2000).
    • 74  Ramig K. Chiral fluorinated anesthetics. Reference71,282–292 (2000).
    • 75  Filler R. Fluorine-containing chiral compounds of biomedical interest. Reference71,1–20 (2000).
    • 76  Olah GA, Nojima M, Kerekes I. Synthetic methods and reactions III. Halofluorination of alkenes in poly-hydrogen fluoride/pyridine solution. Synthesis12,780–783 (1973).
    • 77  Olah GA, Shih JG, Prakash GKS in. Reference1,377–380 (1986).
    • 78  Boswell GA Jr, Ripka WC, Scribner RM, Tullock CW. Fluorination by sulfur tetrafluoride. Organic Reactions21,1–124 (1974).
    • 79  Filler R. Reactions of organic compounds with xenon fluorides. Israel J. Chem.17,71–79 (1978).
    • 80  Rozen S. Selective fluorinations by reagents containing the OF group. Chem. Rev.96,1717–1736 (1996).
    • 81  Lal GS, Pez GP, Syvret RG. Electrophilic NF fluorinating agents. Chem. Rev.96,1737–1755 (1996).
    • 82  Resnati G, DesMarteau DD. N-fluorobis[(trifluoromethyl)sulfonyl]imide: an efficient reagent for the α-fluorination of functionalized carbonyl compounds. J. Org. Chem.56,4925–4929 (1991).
    • 83  Prakash GKS, Krishnamurti R, Olah GA. Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent. J. Am. Chem. Soc.111,393–395 (1989).
    • 84  Ma J-A, Cahard D. Strategies for nucleophilic, electrophilic and radical trifluoromethylations. J. Fluorine Chem.128,975–996 (2007).
    • 85  Umemoto T. Electrophilic perfluoroalkylating agents. Chem. Rev.96,1757–1777 (1996).
    • 86  Iwai N, Sakái R, Tsuchida S, Kitazume M, Kitazume T. Screening of fluorinated materials degrading microbes. J. Fluorine Chem.130,434–437 (2009).
    • 101  Schuman PD, Tarrant P, Warner DA, Westmoreland G. Process for fluorinating uracil and derivatives thereof. US Patent 3954758 (1976).
    • 102  Lontz JF, Raasch MS. α-amino acids containing α-fluorinated-alkyl or cycloalkyl groups. US Patent 2,662,915 (1953).
    • 103  Lal GS. Process for selectively ortho-fluorinating substituted aromatic compounds. US Patent 5,233,074 (1993).

    Bibliography

    • Banks RE, Tatlow JC. In: Fluorine: The First Hundred Years (18861986). Banks RE, Sharp DWA, Tatlow JC (Eds). Elsevier Science Publishing Co., Inc., NY, USA, 93–97 (1986).
    • Midgley T, Henne AL. Organic fluorides as refrigerants. Ind. Eng. Chem.22,542 (1930).
    • Banks RE, Tatlow JC. In: Fluorine: The First Hundred Years (18861986). Banks RE, Sharp DWA, Tatlow JC (Eds). Elsevier Science Publishing Co., Inc., NY, USA, 101–103 (1986).
    • Schmitt R, von Gehren H. J. Prakt. Chem.1,394 (1870).
    • Balz G, Schiemann G. Über aromatische fluorverbindungen, I: ein neues verfahren zu ihrer darstellung. Chem. Ber.1186 (1927).
    • Swarts F. Fluorine derivatives of toluene. Bull. Acad. Roy. Belg.35,375 (1898).
    • McBee ET. Fluorine chemistry. Ind. Eng. Chem.39,236–237__ (1947).
    • Peters RA. Croonian lecture: lethal synthesis. Proc. Roy. Soc. Series B139,143 (1952).
    • Goldman P. The carbon-fluorine bond in compounds of biological interest. Science164,1123–1130 (1969).
    • 10  Smith F. Carbon-Fluorine Compounds. Chemistry, Biochemistry and Biological Activities. A Ciba Foundation Symposium, Elsevier, London, UK (1972).
    • 11  Biochemistry Involving Carbon-Fluorine Bonds. ACS Symposium Series 28, Filler R (Ed.) 1976.
    • 12  Biochemistry of the Elemental Halogens and Inorganic Halides. Kirk KL, Plenum Press, NY, USA (1991).
    • 13  Biochemistry of Halogenated Organic Compounds. Kirk KL, Plenum Press, NY, USA (1991).
    • 14  Kirk KL. Fluorine in biomedicinal chemistry. J. Fluorine Chem.129(9),725–887 (2008).
    • 15  Molecular Modification in Drug Design: Advances in Chemistry Series 45, American Chemical Society (1964).
    • 16  Simons JH. Production of fluorocarbons. J. Electrochem. Soc.95,47 (1949).
    • 17  Yale HL. The trifluoromethyl group in medicinal chemistry. J. Med. Pharm. Chem.1(2),121–133 (1959).
    • 18  Robbins BH. Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J. Pharmacol. Exptl Therapeutics86,197–204 (1946).
    • 19  McBee ET, Filler R. The reaction of 1,2-dichloro-1,1,3,3,3-pentafluoropropane with ethanolic alkali. J. Org. Chem.21(3),370–371 (1956).
    • 20  Suckling CW. Some chemical and physical factors in the development of fluothane. Brit. J. Anesthesia29,466 (1957).
    • 21  Raventós J. The action of fluothane; a new volatile anaesthetic. Brit. J. Pharmacol.11,394–410 (1956).
    • 22  Halpern DF. Recent developments in fluorine substituted volatile anesthetics. In: Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Filler R, Kobayashi Y, Yagupolskii LM (Eds). Elsevier, Amsterdam, The Netherlands, 101–133 (1993).
    • 23  Ferstandig LL. Fluorinated anesthetics. Chemistry of Organic Fluorine Compounds II. A Critical Review. Hudlicky M, Pavlath AE (Eds). American Chemical Society Monograph 187, American Chemical Society, Washington DC, USA, 1133–1137 (1995).
    • 24  Fried J, Sabo EF. Synthesis of 17α -hydroxycorticosterone and its 9α-halo derivatives from 11-epi-17α –hydroxycorticosterone. J. Am. Chem. Soc.75,2273–2274 (1953).
    • 25  Fried J, Sabo EF. 9α-fluoro derivatives of cortisone and hydrocortisone. J. Am. Chem. Soc.76,1455–1456 (1954).
    • 26  Wettstein A. Chemistry of fluorosteroids and their hormonal properties. Reference10,281–301 (1972).
    • 27  Elliott AJ. The role of fluorine in the chemistry of central nervous system agents. Reference22,209–239 (1993).
    • 28  Duschinsky R, Pleven E, Heidelberger C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc.79,4559 (1957).
    • 29  Heidelberger C, Chaudhuri NK, Danneberg P et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature179,663–666 (1957).
    • 30  Filler R. Fluorinated compounds of medicinal interest. Chem. Tech.4,752–757 (1974).
    • 31  Edwards PN. Uses of fluorine in chemotherapy. In: Organofluorine Chemistry, Principles and Commercial Applications. Banks RE, Smart BE, Tatlow JC (Eds). Plenum Press, NY, USA, 501–541 (1994).
    • 32  Hagmann WK. The many roles for fluorine in medicinal chemistry. J. Med. Chem.51(15),4359–4369 (2008).
    • 33  Bergstrom DE, Swartling DJ. Fluorine substituted analogs of nucleic acid components. In: Fluorine-Containing Molecules, Structure, Reactivity, Synthesis, and Applications. Liebman JF, Greenberg A, Dolbier WR Jr (Eds). VCH Publishers, Inc. NY, USA, 259–308 (1988).
    • 34  Hertel LW, Ternansky RJ. Fluorine-containing antiviral and anticancer compounds. Reference22,23–71 (1993).
    • 35  Meng W-D, Qing F-L. fluorinated nucleosides as antiviral and anti-tumor agents. Curr. Top. Med. Chem.6,1499–1528 (2006).
    • 36  Isanbor C, O’Hagan D. Fluorine in medicinal chemistry: a review of anticancer agents. J. Fluorine Chem.127,303–319 (2006).
    • 37  Grever MR et al. Long-term results of the CHOP regimen in stage C chronic lymphocytic leukaemia. Nouv. Rev. Fr. Hematol.30,457 (1988).
    • 38  Montgomery JA. Has the well gone dry? The first Cain memorial award lecture. Cancer Res.42,3911 (1982).
    • 39  Grindey GB, Boder GB, Hertel LW et al. Antitumor activity of 2´,2´-difluorodeoxycytidine (LY188011). Presented at: American Assn. Cancer. Res. 27, Los Angeles, CA, USA, 7–10 May 1986.
    • 40  Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem. Soc. Rev.37,320–330 (2008).
    • 41  Iseki K, Kobayashi Y. Fluorinated vitamin D3 analog with in vivo anticancer activity. In: Biomedical Frontiers of Fluorine Chemistry, Ojima I, McCarthy JR, Welch JT (Eds.). ACS Symposium Series 639, 214–227 (1996).
    • 42  Ojima I et al. Synthesis, biological activity and conformational analysis of fluorine-containing taxoids. Reference42,228–243 (1996).
    • 43  Ojima I, Kuduk SD, Slater JC et al. Use of fluorine in medicinal chemistry and chemical biology of bioactive compounds – a case study on fluorinated taxane anticancer agents. ChemBioChem, Wiley–VCH Verlag, Weinheim, Germany, 5, 628–635 (2004).
    • 44  Kuznetsova L, Pepe A, Ungureanu IM, Pera P, Bernacki RJ, Ojima I. Synthesis and structure–activity relationships of novel 3´-difluoromethyl and 3´-trifluoromethyl-taxoids. J. Fluorine Chem.129,817–828 (2008).
    • 45  Walborsky HM, Baum ME. Chemical effects of the trifluoromethyl group: III. Synthesis of 2-amino-4,4,4-trifluorobutyric acid. J. Org. Chem.21,538 (1956).
    • 46  Loncrini DF, Filler R. Aliphatic Fluoro Amino Acids. Advances in Fluorine Chemistry. Tatlow JC, Peacock RD, Hyman HH, Stacey M (Eds). Butterworths, London, UK, 6, 43–67 (1970).
    • 47  Ojima I. New developments in the synthesis and medicinal applications of fluoroamino acids and peptides. Reference22,241–273 (1993).
    • 48  Ojima I, Kato K, Okabe M, Fuchikami T. Hydroformylation of fluoro olefins, RfCH:CH2, catalyzed by group VIII transition-metal catalysts. Crucial factors for extremely high regioselectivity. J. Am. Chem. Soc.109,7714 (1987).
    • 49  Ojima I, Hirai K, Fujita M, Fuchikami T. New synthetic route to N-acyl-α-amino acids via amidocarbonylation by means of homogeneous binary catalyst systems. J. Organometal. Chem.279,203 (1985).
    • 50  Soloshonok VA. Practical synthesis of enantiopure fluoramino acids of biological interest by asymmetric aldol reactions. Reference42,26–41 (1996).
    • 51  Taguchi T, Shibuya A, Morikawa T. Asymmetric synthesis of functionalized fluorinated cyclopropanes and its application to fluoromethano amino acids. Reference42,73–82 (1996).
    • 52  Kirk KL, Nie J-Y. Fluorinated amino acids in nerve systems. Reference42,312–327 (1996).
    • 53  Cieplak P, Kollman PA, Radomski JP. Molecular design of fluorine-containing peptide mimetics. Reference42,143–156 (1996).
    • 54  Chu DTW. Fluoroquinolone carboxylic acids as antibacterial drugs. Reference22,165–207 (1993).
    • 55  Bonnet-Delpon D. Artemisinin, a target for fluorine chemists: challenging molecule, efficient antimalarial drug. Presented at: Abstracts, Division of Medicinal Chemistry, ACS National Meeting. Boston, MA, USA, 19–23 August 2007.
    • 56  István ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science292,1160–1164 (2001).
    • 57  Annual Reports in Medicinal Chemistry, 33. Bristol JA (Ed.). 328 (1998).
    • 58  Fowler JS. The synthesis and application of F-18 compounds in positron emission tomography. Reference22,309–338 (1993).
    • 59  Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med.27,235 (1986).
    • 60  Arnett CD, Shiue C-Y, Wolf AP. Improved delineation of human dopamine receptors using [18F]-N-methylspiroperidol and PET. J. Neurochem.44,835 (1985).
    • 61  Shiue C-Y, Fowler JS, Wolf AP et al. No-carrier-added fluorine-18-labeled N-methylspiroperidol: synthesis and biodistribution in mice. J. Nucl. Med.27,226 (1986).
    • 62  Ding Y-S, Fowler JS. 18F labeled tracers for positron emission studies in the neurosciences. Reference42,328–343 (1996).
    • 63  Isanbor CI, O’Hagan D. Fluorine in medicinal chemistry: a review of anti-cancer agents. Reference37,315–316 (2006).
    • 64  Sun S, Adejare A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr. Top. Med. Chem.6,1457–1464 (2006).
    • 65  Shah P, Westwell AD. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem.22(5),536–538 (2007).
    • 66  Purser S, Moore PR, Swallow S et al. Fluorine in medicinal chemistry. Chem. Soc. Rev.37,328–329 (2008).
    • 67  Cobb SL, Murphy CD. 19F NMR applications in chemical biology. J. Fluorine Chem.130,132–143 (2009).
    • 68  Stinson SC. Chiral drugs. Chem. Eng. News44, October 9, 1995.
    • 69  Ramachandran PV. Asymmetric Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions. ACS Symposium Series 746. American Chemical Society (2000).
    • 70  Soloshonok VA. Biomimetic reductive amination of fluoro aldehydes and ketones via [1,3]-proton shift reaction. Reference71,26–41 (1996).
    • 71  Soloshonok VA. Biominetic, redundancy agent – free reductions amination of fluorocarbonyl compounds: practical asymmetric synthesis of enantiopure fluoroamines and amino acids. Reference71,74–83 (2000).
    • 72  Ojima I, Inoue T, Chakravarty S. Synthesis of enantiopure fluorine-containing taxoids and their use as anticancer agents as well as probes for biomedical problems. Reference71,158–181 (2000).
    • 73  Kirk KL, Herbert B, Lu SF, Jayachandran B et al. Chemical and biochemical approaches to the enantiomers of chiral fluorinated catecholamines and amino acids. Reference71,194–209 (2000).
    • 74  Ramig K. Chiral fluorinated anesthetics. Reference71,282–292 (2000).
    • 75  Filler R. Fluorine-containing chiral compounds of biomedical interest. Reference71,1–20 (2000).
    • 76  Olah GA, Nojima M, Kerekes I. Synthetic methods and reactions III. Halofluorination of alkenes in poly-hydrogen fluoride/pyridine solution. Synthesis12,780–783 (1973).
    • 77  Olah GA, Shih JG, Prakash GKS in. Reference1,377–380 (1986).
    • 78  Boswell GA Jr, Ripka WC, Scribner RM, Tullock CW. Fluorination by sulfur tetrafluoride. Organic Reactions21,1–124 (1974).
    • 79  Filler R. Reactions of organic compounds with xenon fluorides. Israel J. Chem.17,71–79 (1978).
    • 80  Rozen S. Selective fluorinations by reagents containing the OF group. Chem. Rev.96,1717–1736 (1996).
    • 81  Lal GS, Pez GP, Syvret RG. Electrophilic NF fluorinating agents. Chem. Rev.96,1737–1755 (1996).
    • 82  Resnati G, DesMarteau DD. N-fluorobis[(trifluoromethyl)sulfonyl]imide: an efficient reagent for the α-fluorination of functionalized carbonyl compounds. J. Org. Chem.56,4925–4929 (1991).
    • 83  Prakash GKS, Krishnamurti R, Olah GA. Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent. J. Am. Chem. Soc.111,393–395 (1989).
    • 84  Ma J-A, Cahard D. Strategies for nucleophilic, electrophilic and radical trifluoromethylations. J. Fluorine Chem.128,975–996 (2007).
    • 85  Umemoto T. Electrophilic perfluoroalkylating agents. Chem. Rev.96,1757–1777 (1996).
    • 86  Iwai N, Sakái R, Tsuchida S, Kitazume M, Kitazume T. Screening of fluorinated materials degrading microbes. J. Fluorine Chem.130,434–437 (2009).
    • 101  Schuman PD, Tarrant P, Warner DA, Westmoreland G. Process for fluorinating uracil and derivatives thereof. US Patent 3954758 (1976).
    • 102  Lontz JF, Raasch MS. α-amino acids containing α-fluorinated-alkyl or cycloalkyl groups. US Patent 2,662,915 (1953).
    • 103  Lal GS. Process for selectively ortho-fluorinating substituted aromatic compounds. US Patent 5,233,074 (1993).