We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins

    Yingxue Li

    Department of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.

    ,
    Mark R Lefever

    Department of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.

    ,
    Dhanasekaran Muthu

    Department of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.

    ,
    Jean M Bidlack

    Department of Pharmacology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA

    ,
    Edward J Bilsky

    Department of Pharmacology, University of New England College of Osteopathic Medicine, 11 Hill Beach Road, Biddeford, ME 04005, USA

    &
    Robin Polt

    * Author for correspondence

    Department of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.

    Published Online:https://doi.org/10.4155/fmc.11.195

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.

    References

    • Borsook D, Hargreaves RJ, Becerra L. Can functional magnetic resonance imaging improve success rates in central nervous system drug discovery? Expert Opin. Drug Disc.6,597–617 (2011).
    • Banks WA. Delivery of peptides to the brain: emphasis on therapeutic development. Biopolymers90,589–594 (2008).
    • Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Therap.104,29–45 (2004).
    • Pardridge WM. Brain Drug Targeting. Cambridge University Press, Cambridge, UK (2001).
    • Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr. Pharm. Des.16(28),3071–3088 (2010).
    • Ibáñez CF. Beyond the cell surface: new mechanisms of receptor function. Biochem. Biophys. Res. Commun.396(1),24–27 (2010).
    • Cleland JL, Langer R. Formulation and Delivery of Proteins and Peptides. American Chemical Society, Washington, DC, USA (1994).
    • Taylor MD, Amidon GL. Peptide-Based Drug Design. American Chemical Society, Washington, DC, USA (1995).
    • Van der Walle C. Peptide and Protein Delivery. Academic Press, London, UK (2011).
    • 10  Snyder SH. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology47,274–285 (2004).
    • 11  Lagerström MC, Schiöth HB. Structural diversity of G protein coupled receptors and significance for drug discovery. Nature Rev. Drug Disc.7,339–357 (2008).
    • 12  Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP. Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem. Rev.105,793–826 (2005).
    • 13  Martin WR, Eades CG, Thompson JA et al. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther.197,517–532 (1976).
    • 14  Evans CJ. Secrets of the opium poppy revealed. Neuropharmacology47,293–299 (2004).
    • 15  Chang K-J, Porreca F, Woods J. The Delta Receptor. Marcel Dekker, Inc., NY, USA (2004).
    • 16  Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW. Endogenous opioid peptides: multiple agonists and receptors. Nature267,495–499 (1977).
    • 17  Yue X, Falk T, Zuniga LA et al. Effects of the novel glycopeptide opioid agonist MMP-2200 in preclinical models of Parkinson’s disease. Brain Res.1413,72–83 (2011).
    • 18  Neumeyer JL, Zhang A, Xiong W et al. Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors. J. Med. Chem.46,5162–5170 (2003).
    • 19  Jordan BA, Devi L. G-protein-coupled receptor heterodimerization modulates receptor function. Nature399,697–700 (1999).
    • 20  Bhushan RG, Sharma SK, Xie Z et al. A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J. Med. Chem.47,2969–2972 (2004).
    • 21  Simantov R, Kuhar MJ, Uhl GR et al. Opioid peptide enkephalin: Immunohistochemical mapping in rat central nervous system. Proc. Natl Acad. Sci. USA74,2167–2171 (1977).
    • 22  Scherrer G, Imamachi N, Cao Y-Q et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell137,1148–1159 (2009).
    • 23  Schiller PW. Bi- or multifunctional opioid peptide drugs. Life Sci.86,598–603 (2010).
    • 24  Pradhan AA, Befort K, Nozaki C et al. The delta opioid receptor: an evolving target for the treatment of brain disorders. TIPS32,581–590 (2011).
    • 25  Patkar KA, Murray TF, Aldrich JV. The effects of C-terminal modifications on the opioid activity of [N-benzyltyr1]dynorphin A-(1–11) analogues. J. Med. Chem.52,6814–6821 (2009).
    • 26  Binder W. Walker JS. Effect of the peripherally selective β-opioid agonist, asimadoline, on adjuvant arthritis. Br. J. Pharmacol.124,647–654 (1998).
    • 27  Stevenson GW, Folk JE, Linsenmayer DC et al. Opioid interactions in rhesus monkeys: effects of δ + µ and δ + κ agonists on schedule-controlled responding and thermal nociception. J. Pharm. Exp. Therap.307,1054–1064 (2003).
    • 28  Roth BL, Baner K, Westkaemper R et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl Acad. Sci. USA99,11934–11939 (2002).
    • 29  Aldrich JV, McLaughlin JP. Peptide kappa opioid receptor ligands: potential for drug development. AAPS J.11,312–322 (2009).
    • 30  Yamada H, Shimoyama N, Sora I et al. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Brain Res.1083,61–69 (2006).
    • 31  Giardina G, Clarke GD, Grugni M et al. Central and peripheral analgesic agents: chemical strategies for limiting brain penetration in kappa-opioid agonists belonging to different chemical classes. Farmaco50,405–418 (1995).
    • 32  Carroll I, Thomas JB, Dykstra LA et al. Pharmacological properties of JDTic: a novel kappa-opioid receptor antagonist. Eur. J. Pharmacol.501,111–9 (2004).
    • 33  Hökfelt T, Bartfai T, Bloom F. Neuropeptides: opportunities for drug discovery. Lancet Neurology2,463–472 (2003).
    • 34  Cahill CM, Morinville A, Hoffert C et al. Up-regulation and trafficking of (opioid receptor in a model of chronic inflammation: implications for pain control. Pain101,199–208 (2003).
    • 35  Weber E, Escht FS, Bohlen P et al. Metorphamide: isolation, structure, and biologic activity of an amidated opioid octapeptide from bovine brain. Proc. Natl Acad. Sci. USA80,7362–7366 (1983).
    • 36  Arakawa K, De Jong W, Mulder AH et al. The electrically stimulated release of [3H]noradrenaline from nucleus tractus solitarii slices in vitro is modulated via β-opioid receptors. Eur. J. Pharm.192,311–316 (1991).
    • 37  Ronken E, Wiegant VM, Kaspersen FM et al. Topography and characteristics of specific binding sites for non-opioid β-type endorphins in the rat brain as studied by autoradiography with [35S]Met-desenkephalin-γ-endorphin. Brain Res.615,63–70 (1993).
    • 38  Navolotskaya E, Kovalitskaya YA, Zolotarev YA et al. Binding of synthetic fragments of β-endorphin to nonopioid β-endorphin receptor. J. Peptide Sci.14,1121–1128 (2008).
    • 39  Schwyzer R, Sargent DF. Membrane lipid phase as catalyst for peptide receptor interactions. Proc. Natl Acad. Sci. USA83,5774–78 (1986).
    • 40  Tamm LK. Protein–Lipid Interactions. From Membrane Domains to Cellular Networks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2005).
    • 41  Adam G, Delbrück M. In: Structural Chemistry and Molecular Biology. Rich R, Davidson N (Eds). Freeman & Co., San Francisco, CA, USA, 198–199 (1968).
    • 42  Saffman PG, Delbrück M. Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA72,3111–3113 (1975).
    • 43  Segrest JP, Jackson RL, Morrisett JD et al. A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett.38,247–253 (1974).
    • 44  Epand RM, Shai Y, Segrest JP et al. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers37,319–338 (1995).
    • 45  Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx: J. Am. Soc. Exp. NeuroTher.2,3–14 (2005).
    • 46  Terasaki T, Hirai K, Sato H et al. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078 into the blood–brain barrier. J. Pharm. Exp. Ther.251,351–357 (1989).
    • 47  Deguchi Y, Miyakawa Y, Sakurada S et al. Blood–brain barrier transport of a novel micro 1-specific opioid peptide, H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA). J. Neurochem.84,1154–1161 (2003).
    • 48  Kastin AJ, Pan W, Maness LM et al. Peptides crossing the blood–brain barrier: some unusual observations. Brain Res.848,96–100 (1999).
    • 49  Bredeloux P, Cavelier F, Dubuc I et al. Synthesis and biological effects of c(Lys-Lys-Pro-Tyr-Ile-Leu-Lys-Lys-Pro-Tyr-Ile-Leu) (JMV2012), a new analogue of neurotensin that crosses the blood–brain barrier. J. Med. Chem.51,1610–1616 (2008).
    • 50  Egleton RD, Davis P. Development of neuropeptide drugs that cross the blood–brain barrier. NeuroRx: J. Am. Soc. Exp. NeuroTher.2,44–53 (2005).
    • 51  Mehiri M, Chen W-H, Janout V et al. Molecular umbrella transport: exceptions to the classic size/lipophilicity rule. J. Am. Chem. Soc.131,1338–1339 (2009).
    • 52  Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjugate Chem.19,1327–1338 (2008).
    • 53  Malakoutikhah M, Teixidó M, Giralt E. Toward an optimal blood–brain barrier shuttle by synthesis and evaluation of peptide libraries. J. Med. Chem.51,4881–4889 (2008).
    • 54  Meldal M, Hilaire PM. Synthetic methods of glycopeptide assembly and biological analysis of glycopeptide products. Curr. Opin. Chem. Biol.1,552–563 (1997).
    • 55  Boons GJ, Polt R. The chemistry of O- and N-linked glycopeptides. In: Carbohydrate Chemistry. Blackie Press, London, UK, 223–242 (1998).
    • 56  Eriko T, Yuko N, Yasuhiro K et al. Chemoenzymatic synthesis of a MUC1 glycopeptide carrying non-natural sialyl TF-beta O-glycan. Biosci. Biotech. Biochem.70,2515–2522 (2006).
    • 57  Nianhuan Y, Gabriel F, Hamed M et al. Facile synthesis of glycosylated Fmoc amino acid building blocks assisted by microwave irradiation. Carbohydrate Res.345,2277–2281 (2010).
    • 58  Polt R, Szabò LZ, Treiberg J et al. General methods for alpha-O-ser/thr or beta-O-ser/thr glycosides and glycopeptides. Solid-phase synthesis of O-glycosyl cyclic enkephalin analogues. J. Am. Chem. Soc.114,10249–58 (1992).
    • 59  Mitchell SA, Pratt MR, Hruby VJ, Polt R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem.66,2327–42 (2001).
    • 60  Keyari CM, Polt R. Serine and threonine Schiff base esters react with β-anomeric peracetates in the presence of BF3•Et2O to produce β-glycosides. J. Carbohydr. Chem.29,181–206 (2010).
    • 61  Lefever MR, Szabò LZ, Anglin B et al. Glycosylation of β-amino acids by sugar acetate donors with InBr3. Minimally competent Lewis acids. Carbohydr. Res.347, (2012) (In press).
    • 62  Hruby VJ, Toth G, Gehring CA et al. Topographically designed analogues of [D-Pen2,D-Pen5]enkephalin. J. Med. Chem.34,1823–1830 (1991).
    • 63  Mosberg HI, Hurst R, Hruby VJ et al. Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc. Natl Acad. Sci. USA80,5871–5874 (1983).
    • 64  Weber SJ, Abbruscato TJ, Brownson EA et al. Assessment of an in vitro blood–brain barrier model using several [Met5]enkephalin opioid analogs. J. Pharm. Exp. Ther.266,1649–1655 (1993).
    • 65  Rodriguez RE, Rodriguez FD, Sacristan MP et al. New glycosylpeptides with high antinociceptive activity. Neurosci. Lett.101,89–94 (1989).
    • 66  Polt R, Porreca F, Szabò LZ et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood–brain barrier. Proc. Natl Acad. Sci. USA91,7114–7118 (1994).
    • 67  Egleton RD, Mitchell SA, Huber JD et al. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res.881,37–46 (2000).
    • 68  Zajac J-M, Gacel G, Petit F et al. Deltakephalin, Tyr-D-Thr-Gly-Phe-Leu-Thr : a new highly potent and fully specific agonist for opiate β-receptors. Biochem. Biophys. Res. Commun.111,390–397 (1983).
    • 69  Bilsky EJ, Egleton RD, Mitchell SA et al. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability. J. Med. Chem.43,2586–2590 (2000).
    • 70  Egleton RD, Mitchell SA, Huber JD et al. Improved blood–brain barrier penetration and enhanced analgesia of an opioid peptide by glycosylation. J. Pharm. Exp. Therap.299,967–972 (2001).
    • 71  Horvat S. Opioid peptides and their glycoconjugates: structure-activity relationships. Curr. Med. Chem. – Central Nervous System Agents1,133–154 (2001).
    • 72  Elmagbari NO, Egleton RD, Palian MM et al. Antinociceptive structure–activity studies with enkephalin-based opioid glycopeptides. J. Pharm. Exp. Therap.311,290–297 (2004).
    • 73  Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain64,493–501 (1996).
    • 74  Lowery JJ, Raymond TJ, Giuvelis D et al.In vivo characterization of MMP-2200, a mixed δ/µ opioid agonist, in mice. J. Pharmacol. Exp. Ther.336,767–78 (2011).
    • 75  Do Carmo GP, Polt R, Bilsky R et al. Behavioral pharmacology of the µ/ δ opioid glycopeptide MMP2200 in Rhesus monkeys. J. Pharm. Exp. Therap.326,939–948 (2008).
    • 76  Brainin-Mattos J, Smith ND, Malkmus S et al. Cancer-related bone pain is attenuated by a systemically available delta-opioid receptor agonist. Pain122,174–181 (2006).
    • 77  Codd EE, Carson JR, Colburn RW et al. JNJ-20788560 [9-(8-azabicyclo[3.2.1]oct-3-ylidene)-9H-xanthene-3-carboxylic acid diethylamide], a selective delta opioid receptor agonist, is a potent and efficacious antihyperalgesic agent that does not produce respiratory depression, pharmacologic tolerance, or physical dependence. J. Pharmacol. Exp. Ther..329,241–51 (2009).
    • 78  Otis V, Sarret P, Gendron L. Spinal activation of delta opioid receptors alleviates cancer-related bone pain. Neurosci.183,221–9 (2011).
    • 79  Bilsky EJ, Calderon SN, Wang T et al. SNC 80, a selective, nonpeptidic and systemically active opioid delta agonist. J. Pharmacol. Exp. Ther.273,359–66 (1995).
    • 80  Bilsky EJ, Bernstein RN, Pasternak GW et al. Selective inhibition of [D-Ala2, Glu4]deltorphin antinociception by supraspinal, but not spinal, administration of an antisense oligodeoxynucleotide to an opioid delta receptor. Life Sci.55,PL37–PL43 (1994).
    • 81  Wild KD, McCormick J, Bilsky EJ et al. Antinociceptive actions of BW373U86 in the mouse. J. Pharmacol. Exp. Ther.267,858–865 (1993).
    • 82  Kreil G, Barra D, Simmaco M et al. Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for delta opioid receptors. Eur. J. Pharmacol.162,123–128 (1989).
    • 83  Pradhan AA, Befort K, Nozaki C et al. The delta opioid receptor: an evolving target for the treatment of brain disorders. TIPS32,581–90 (2011).
    • 84  Roemer D, Buescher HH, Hill RC et al. A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature268,547–549 (1977).
    • 85  Handa BK, Land AC, Lord JA et al. Analogues of β-LPH61-64 possesing selective agonist activity at β-opiate receptors. Eur. J. Pharmacol.70,531–540 (1981).
    • 86  Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptide receptor interactions. Proc. Natl Acad. Sci. USA83,5774–5778 (1986).
    • 87  Lowery JJ, Yeomans L, Keyari CM et al. Glycosylation improves the central effects of DAMGO. Chem. Biol. Drug Des.69,41–47 (2007).
    • 88  Yeomans L, Muthu D, Lowery JJ et al. Phosphorylation of enkephalins: NMR and CD studies in aqueous and membrane-mimicking environments. Chem. Biol. Drug Des.78,749–56 (2011).
    • 89  Egleton RD, Bilsky EJ, Tollin G et al. Biousian glycopeptides penetrate the blood–brain barrier. Tetrahedron Asymm.16,65–75 (2005).
    • 90  Taylor JW, Miller RJ, Kaiser ET. Structural characterization of beta-endorphin through the design, synthesis, and study of model peptides. Mol. Pharm.22,657–666 (1982).
    • 91  Kaiser ET, Kézdy FJ. Amphiphilic secondary structure: design of peptide hormones. Science 223,249–255 (1984).
    • 92  Palian MM, Boguslavsky VI, O’Brien DF et al. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J. Am. Chem. Soc.125(19),5823–5831 (2003).
    • 93  Dhanasekaran M, Alves I, Yeomans L et al. Glycopeptides related to β-endorphin adopt helical amphipathic conformations in the presence of lipid bilayers. J. Am. Chem. Soc.127,5435–5448 (2005).
    • 94  Neumann J, Couvineau A, Murail S et al. Class-B GPCR activation: is ligand helix-capping the key? TIBS33,314–319 (2008).
    • 95  Gronenborn AM, Bovermann G, Clore GM. A 1H-NMR study of the solution conformation of secretin. Resonance assignment and secondary structure. FEBS Lett.215,88–94 (1987).
    • 96  Neidigh JW, Fesinmeyer RM, Prickett KS et al. Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states. Biochemistry40,13188–13200 (2001).
    • 97  Sasaki K, Dockerill S, Adamiak DA et al. X-ray analysis of glucagon and its relationship to receptor binding. Nature257,751–757 (1975).
    • 98  Jin L, Briggs Sl, Chandrasekhar S et al. Crystal structure of human parathyroid hormone 1–34 at 0.9-Å resolution. J. Biol. Chem.275,27238–27244 (2000).
    • 99  Inooka H, Ohtaki T, Kitahara O et al. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat. Struct. Biol.8,161–165 (2001).
    • 100  Lefever MR. Design, synthesis and characterization of helical opioid glycopeptides and fluorescent derivatives including optimization of serine glycosylation utilizing sugar acetates. Ph.D. Dissertation, The University of Arizona, USA (2010).
    • 101  Li Y. Design, synthesis, and characterization of helical opioid glycopeptide agonists: the study of the structure-activity relationship and transport of glycopeptides related to beta-endorphin and dynorphin. Ph.D. Dissertation, The University of Arizona, USA (2011).
    • 102  Job GE, Kennedy RJ, Heitmann B et al. Temperature- and length-dependent energetics of formation for polyalanine helices in water: assignment of w(Ala)(n,T) and temperature-dependent CD ellipticity standards. J. Am. Chem. Soc.128,8227–8233 (2006).
    • 103  Chin DH, Woody RW, Rohl CA et al. Circular dichroism spectra of short, fixed-nucleus alanine helices. Proc. Natl Acad. Sci. USA99,15416–15421 (2002).
    • 104  Biondi B, Giannini E, Negri L et al. Opioid peptides: synthesis and biological activity of new endomorphin analogues. Int. J. Peptide Res. Therap.12,145–151 (2006).
    • 105  Negri L, Lattanzi R, Tabacco F et al. Dermorphin and deltorphin glycosylated analogues: synthesis and antinociceptive activity after systemic administration. J. Med. Chem.42,400–404 (1999).
    • 106  Biondi L, Filira F, Giannini E et al. Novel glycosylated [Lys7]-dermorphin analogues: synthesis, biological activity and conformational investigations. J. Pept. Sci.13,179–189 (2007).
    • 107  Dangoor D, Biondi B, Gobbo M et al. Novel glycosylated VIP analogs: synthesis, biological activity, and metabolic stability. J. Pept. Sci.14,321–328 (2008).
    • 201  Cox BM, Borsodi A, Caló G et al. Opioid receptors, introductory chapter. IUPHAR database. www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=50