We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs

    Jingxin Wang

    Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA

    ,
    Ryan Hudson

    Theravance, Inc. 901 Gateway Boulevard, South San Francisco, CA 94080, USA

    &
    Herman O Sintim

    * Author for correspondence

    Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA.

    Published Online:https://doi.org/10.4155/fmc.12.62

    There is a large range of diseases, such diabetes and cancer, which are connected to abnormal fatty acid metabolism in human cells. Therefore, inhibitors of human fatty acid synthase have great potential to manage or treat these diseases. In prokaryotes, fatty acid synthesis is important for signaling, as well as providing starting materials for the synthesis of phospholipids, which are required for the formation of the cell membrane. Recently, there has been renewed interest in the development of new molecules that target bacterial fatty acid synthases for the treatment of bacterial diseases. In this review, we look at the differences and similarities between fatty acid synthesis in humans and bacteria and highlight various small molecules that have been shown to inhibit either the mammalian or bacterial fatty acid synthase or both.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer7(10),763–777 (2007).▪▪ Reviews fatty acid synthesis in cancerous cells.
    • Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res.66(12),5977–5980 (2006).
    • Zhang YM, White SW, Rock CO. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem.281(26),17541–17544 (2006).
    • Smith S, Tsai SC. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep.24(5),1041–1072 (2007).
    • Wright HT, Reynolds KA. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol.10(5),447–453 (2007).
    • Campbell JW, Cronan JE. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol.55,305–332 (2001).
    • Rada PV, Hoebel BG. Supraadditive effect of d-fenfluramine plus phentermine on extracellular acetylcholine in the nucleus accumbens: possible mechanism for inhibition of excessive feeding and drug abuse. Pharmacol. Biochem. Behav.65(3),369–373 (2000).
    • Hainer V, Kabrnova K, Aldhoon B, Kunesova M, Wagenknecht M. Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann. NY Acad. Sci.1083,252–269 (2006).
    • Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab. J.36(1),13–25 (2012).
    • 10  Finer N. Sibutramine: its mode of action and efficacy. Int. J. Obes. Relat. Metab. Disord.26(Suppl. 4),S29–S33 (2002).
    • 11  Fong TM, Heymsfield SB. Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int. J. Obes., 33(9),947–955 (2009).
    • 12  Hochuli E, Kupfer E, Maurer R, Meister W, Mercadal Y, Schmidt K. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. II. Chemistry and structure elucidation. J. Antibiot.40(8),1086–1091 (1987).
    • 13  Zhi J, Melia AT, Eggers H, Joly R, Patel IH. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J. Clin. Pharmacol.35(11),1103–1108 (1995).
    • 14  Harrison-Woolrych M, Ashton J, Herbison P. Fatal and non-fatal cardiovascular events in a general population prescribed sibutramine in New Zealand: a prospective cohort study. Drug Saf.33(7),605–613 (2010).
    • 15  Mitchell PB, Morris MJ. Depression and anxiety with rimonabant. Lancet370(9600),1671–1672 (2007).
    • 16  Nakazato M, Murakami N, Date Y et al. A role for ghrelin in the central regulation of feeding. Nature409(6817),194–198 (2001).
    • 17  Lage R, Vazquez MJ, Varela L et al. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J.24(8),2670–2679 (2010).
    • 18  Barnett BP, Hwang Y, Taylor MS et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science330(6011),1689–1692 (2010).
    • 19  Mera P, Bentebibel A, Lopez-Vinas E et al. C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem. Pharmacol.77(6),1084–1095 (2009).
    • 20  Petersen KF, Oral EA, Dufour S et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest.109(10),1345–1350 (2002).
    • 21  Kim YD, Park KG, Lee YS et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes57(2),306–314 (2008).
    • 22  Donath MY, Ehses JA, Maedler K et al. Mechanisms of beta-cell death in Type 2 diabetes. Diabetes54(Suppl. 2),S108–S113 (2005).
    • 23  Luzi L, Pozza G. Glibenclamide: an old drug with a novel mechanism of action? Acta Diabetol.34(4),239–244 (1997).
    • 24  Samulitis BK, Goda T, Lee SM, Koldovsky O. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrases in rat small intestine. Drugs Exp. Clin. Res., 13(8),517–524 (1987).
    • 25  Bolen S, Feldman L, Vassy J et al. Systematic review: comparative effectiveness and safety of oral medications for Type 2 diabetes mellitus. Ann. Intern. Med.147(6),386–399 (2007).
    • 26  Nomura S, Sakamaki S, Hongu M et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of Type 2 diabetes mellitus. J. Med. Chem.53(17),6355–6360 (2010).
    • 27  Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim. Biophys. Acta1801(1),1–22 (2010).
    • 28  Espinosa E, Zamora P, Feliu J, Gonzalez Baron M. Classification of anticancer drugs – a new system based on therapeutic targets. Cancer Treat. Rev.29(6),515–523 (2003).
    • 29  Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc. Natl Acad. Sci. USA99(21),13481–13486 (2002).
    • 30  Waters TR, Swann PF. Cytotoxic mechanism of 6-thioguanine: hMutSalpha, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry36(9),2501–2506 (1997).
    • 31  Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev.99(9),2467–2498 (1999).
    • 32  Fuertes MA, Castilla J, Alonso C, Perez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem.10(3),257–266 (2003).
    • 33  Burden DA, Osheroff N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta1400(1–3),139–154 (1998).
    • 34  Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther.310(3),1062–1075 (2004).
    • 35  Iorns E, Lord CJ, Ashworth A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem. J.417(1),361–370 (2009).
    • 36  Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann. Oncol.5(Suppl. 6),S3–S6 (1994).
    • 37  Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature390(6658),404–407 (1997).
    • 38  Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther.7(10),3129–3140 (2008).
    • 39  Chen KF, Chen HL, Tai WT et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J. Pharmacol. Exp. Ther.337(1),155–161 (2011).
    • 40  Ozols RF, Bundy BN, Greer BE et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.21(17),3194–3200 (2003).
    • 41  Gottesman MM. Mechanisms of cancer drug resistance. Annu. Rev. Med.53,615–627 (2002).
    • 42  Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351(27),2817–2826 (2004).
    • 43  Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov.4(12),988–1004 (2005).
    • 44  Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer11(5),325–337 (2011).
    • 45  Menendez JA, Vellon L, Mehmi I et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc. Natl Acad. Sci. USA101(29),10715–10720 (2004).
    • 46  Liu H, Liu JY, Wu X, Zhang JT. Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int. J. Biochem. Mol. Biol.1(1),69–89 (2010).
    • 47  Howden BP, Ward PB, Charles PG et al. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin. Infect. Dis.38(4),521–528 (2004).
    • 48  McDermott PF, Zhao S, Wagner DD, Simjee S, Walker RD, White DG. The food safety perspective of antibiotic resistance. Anim. Biotechnol.13(1),71–84 (2002).
    • 49  White DG, Zhao S, Sudler R et al. The isolation of antibiotic-resistant salmonella from retail ground meats. N. Engl. J. Med.345(16),1147–1154 (2001).
    • 50  Raviglione MC, Smith IM. XDR tuberculosis – implications for global public health. N. Engl. J. Med.356(7),656–659 (2007).
    • 51  Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet368(9538),874–885 (2006).
    • 52  Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother.53(12),5046–5054 (2009).
    • 53  Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-beta-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob. Agents Chemother.54(11),4914–4916 (2010).
    • 54  Mochon AB, Garner OB, Hindler JA et al. New Delhi metallo-beta-lactamase (NDM-1)-producing Klebsiella pneumoniae: case report and laboratory detection strategies. J. Clin. Microbiol.49(4),1667–1670 (2011).
    • 55  Dye C, Williams BG, Espinal MA, Raviglione MC. Erasing the world’s slow stain: strategies to beat multidrug-resistant tuberculosis. Science295(5562),2042–2046 (2002).
    • 56  Shah NS, Wright A, Bai GH et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis.13(3),380–387 (2007).
    • 57  Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg. Infect. Dis.4(2),239–249 (1998).
    • 58  Kollef MH. Gram-negative bacterial resistance: evolving patterns and treatment paradigms. Clin. Infect. Dis.40(S2),S85–S88 (2005).
    • 59  Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis.34(5),634–640 (2002).
    • 60  Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob. Agents Chemother.38(8),1742–1752 (1994).
    • 61  Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.44(9),2242–2246 (2000).
    • 62  Li XZ, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother.38(8),1732–1741 (1994).
    • 63  Schweizer HP. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob. Agents Chemother.42(2),394–398 (1998).
    • 64  D’Costa VM, King CE, Kalan L et al. Antibiotic resistance is ancient. Nature477(7365),457–461 (2011).
    • 65  Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10(9),597–602 (2010).
    • 66  Poirel L, Lagrutta E, Taylor P, Pham J, Nordmann P. Emergence of metallo-beta-lactamase NDM-1-producing multidrug-resistant Escherichia coli in Australia. Antimicrob. Agents Chemother.54(11),4914–4916 (2010).
    • 67  Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob. Agents Chemother.55(2),934–936 (2011).
    • 68  Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-beta-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg. Infect. Dis.17(1),103–106 (2011).
    • 69  WHO. The Global Plan to Stop TB, 2011–2015. WHO, Geneva, Switzerland (2010).
    • 70  Mediterranean E. The Global Tuberculosis Epidemic; Nov. 2010 – Fact Sheet; No. 7883–7802. Kaiser Family Foundation, Menlo Park, CA, USA (2010).
    • 71  Novak R, Henriques B, Charpentier E, Normark S, Tuomanen E. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature399(6736),590–593 (1999).
    • 72  Chiosis G, Boneca IG. Selective cleavage of D-Ala-D-Lac by small molecules: re-sensitizing resistant bacteria to vancomycin. Science293(5534),1484–1487 (2001).
    • 73  Uttley AH, Collins CH, Naidoo J, George RC. Vancomycin-resistant enterococci. Lancet1(8575–8576),57–58 (1988).
    • 74  Moellering RC, Linden PK, Reinhardt J, Blumberg EA, Bompart F, Talbot GH. The efficacy and safety of quinupristin/dalfopristin for the treatment of infections caused by vancomycin-resistant Enterococcus faecium. J. Antimicrob. Chemother.44(2),251–261 (1999).
    • 75  Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis.34(11),1481–1490 (2002).
    • 76  Tally FP, Zeckel M, Wasilewski MM et al. Daptomycin: a novel agent for Gram-positive infections. Expert Opin. Investig. Drugs8(8),1223–1238 (1999).
    • 77  Schmitz FJ, Sadurski R, Stattfeld A, Kray A, Verhoef J, Fluit AC. Cross-resistance analyses and molecular typing of Staphylococcus aureus and Streptococcus spp. isolates resistant to quinupristin/dalfopristin. J. Antimicrob. Chemother.44(6),847–849 (1999).
    • 78  Lewis JS 2nd, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob. Agents Chemother.49(4),1664–1665 (2005).
    • 79  Tsiodras S, Gold HS, Sakoulas G et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet358(9277),207–208 (2001).
    • 80  Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science175(23),720–731 (1972).
    • 81  Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem.71,635–700 (2002).
    • 82  Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu. Rev. Biochem.64,29–63 (1995).
    • 83  Minnikin DE, Kremer L, Dover LG, Besra GS. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol.9,545–553 (2002).
    • 84  Witkowski A, Ghosal A, Joshi AK, Witkowska HE, Asturias FJ, Smith S. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase. Chem. Biol.11(12),1667–1676 (2004).
    • 85  Asturias FJ, Chadick JZ, Cheung IK et al. Structure and molecular organization of mammalian fatty acid synthase. Nat. Struct. Mol. Biol.12(3),225–232 (2005).
    • 86  Wakil SJ, Porter JW, Gibson DM. Studies on the mechanism of fatty acid synthesis. 1. Preparation and purification of an enzyme system for reconstruction of fatty acid synthesis. J. Biochim. Biophys. Acta24(3),453–461 (1957).
    • 87  Hiltunen JK, Schonauer MS, Autio KJ, Mittelmeier TM, Kastaniotis AJ, Dieckmann CL. Mitochondrial fatty acid synthesis type II: more than just fatty acids. J. Biol. Chem.284(14),9011–9015 (2009).
    • 88  Kridel SJ, Lowther WT, Pemble CW. Fatty acid synthase inhibitors: new directions for oncology. Expert Opin. Inv. Drug.16(11),1817–1829 (2007).
    • 89  Lomakin IB, Xiong Y, Steitz TA. The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell129(2),319–332 (2007).
    • 90  Maier T, Jenni S, Ban N. Architecture of mammalian fatty acid synthase at 4.5 Å resolution. Science311(5765),1258–1262 (2006).
    • 91  Maier T, Leibundgut M, Boehringer D, Ban N. Structure and function of eukaryotic fatty acid synthases. Q. Rev. Biophys.43(3),373–422 (2010).
    • 92  Smith S, Witkowski A, Joshi AK. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res.42(4),289–317 (2003).
    • 93  Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl Acad. Sci. USA97(4),1444–1449 (2000).▪ Provides insight on human ACC2 function and localization.
    • 94  Yu LP, Kim YS, Tong L. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc. Natl Acad. Sci. USA107(51),22072–22077 (2010).
    • 95  Lee CK, Cheong HK, Ryu KS et al. Biotinoyl domain of human acetyl-CoA carboxylase: structural insights into the carboxyl transfer mechanism. Proteins Struct. Funct. Bioinf.72(2),613–624 (2008).
    • 96  Wakil SJ. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry28(11),4523–4530 (1989).
    • 97  Wakil SJ, Stoops JK, Joshi VC. Fatty acid synthesis and its regulation. Annu. Rev. Biochem.52,537–579 (1983).
    • 98  Chen Z, Leskinen H, Liimatta E et al. Myocardial overexpression of Mecr, a gene of mitochondrial FAS II leads to cardiac dysfunction in mouse. PLoS ONE4(5),e5589 (2009).
    • 99  Schneider R, Massow M, Lisowsky T, Weiss H. Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein. Curr. Genet.29(1),10–17 (1995).
    • 100  Witkowski A, Joshi AK, Smith S. Coupling of the de novo fatty acid biosynthesis and lipoylation pathways in mammalian mitochondria. J. Biol. Chem.282(19),14178–14185 (2007).
    • 101  Guler JL, Kriegova E, Smith TK, Lukes J, Englund PT. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol. Microbiol.67(5),1125–1142 (2008).
    • 102  Morita YS, Paul KS, Englund PT. Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. Science288(5463),140–143 (2000).
    • 103  Yi X, Maeda N. Endogenous production of lipoic acid is essential for mouse development. Mol. Cell. Biol.25(18),8387–8392 (2005).
    • 104  Parsons JB, Rock CO. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr. Opin. Microbiol.14(5),544–549 (2011).▪▪ Summarizes the recent debate on whether fatty acid synthesis is a suitable target for develeping antibiotics and provides an excellent perspective on this issue.
    • 105  Lu YJ, Zhang YM, Grimes KD, Qi J, Lee RE, Rock CO. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol. Cell23(5),765–772 (2006).
    • 106  Smith S, Witkowski A, Joshi AK. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res.42(4),289–317 (2003).
    • 107  Lu YJ, Zhang YM, Rock CO. Product diversity and regulation of type II fatty acid synthases. Biochem. Cell Biol.82(1),145–155 (2004).
    • 108  Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol. Rev.41(2),391–418 (1977).
    • 109  Cronan JE, Waldrop GL. Multi-subunit acetyl-CoA carboxylases. Prog. Lipid Res.41,407 (2002).
    • 110  Lambalot RH, Walsh CT. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J. Biol. Chem.270(42),24658 (1995).
    • 111  Kuhajda FP, Jenner K, Wood FD et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl Acad. Sci. USA91(14),6379–6383 (1994).
    • 112  White SW, Zheng J, Zhang YM, Rock CO. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem.74,791–831 (2005).
    • 113  Qiu X, Janson CA, Konstantinidis AK et al. Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J. Biol. Chem.274(51),36465–36471 (1999).
    • 114  Haapalainen AM, Merilainen G, Wierenga RK. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci.31(1),64–71 (2006).
    • 115  Schaefer AL, Val DL, Hanzelka BL, John E, Cronan JE Jr, Greenberg EP. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl Acad. Sci. USA93,9505 (1996).
    • 116  Raetz CRH, Garrett TA, Reynolds CM et al. Kdo2-lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J. Lipid Res.47,1097 (2006).
    • 117  Harwood HJ Jr. Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin. Ther. Targets9(2),267–281 (2005).
    • 118  Zhang H, Tweel B, Li J, Tong L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186. Structure12(9),1683–1691 (2004).
    • 119  Corbett JW, Freeman-Cook KD, Elliott R et al. Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2. Bioorg. Med. Chem. Lett.20(7),2383–2388 (2010).
    • 120  Harwood HJ Jr, Petras SF, Shelly LD et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem.278(39),37099–37111 (2003).
    • 121  Schupp T, Toupet C, Cluzel B et al. A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J. Bacteriol.177(13),3673–3679 (1995).
    • 122  Vahlensieck HF, Pridzun L, Reichenbach H, Hinnen A. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet.25(2),95–100 (1994).
    • 123  Beckers A, Organe S, Timmermans L et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res.67(17),8180–8187 (2007).
    • 124  Fredenhagen A, Tamura SY, Kenny PTM, Komura H, Naya Y, Nakanishi K. Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J. Am. Chem. Soc.109(14),4409 (1987).
    • 125  Davies SG, Dixon DJ. Asymmetric syntheses of moiramide B and andrimid. J. Chem. Soc. Perkin Trans.1,2635–2644 (1998).
    • 126  Freiberg C, Brunner NA, Schiffer G et al. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J. Biol. Chem.279(25),26066 (2004).
    • 127  Lin T-W, Melgar MM, Kurth D et al. Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103,3072–3077 (2006).
    • 128  Lin T-W, Nguyen T, Kurth D et al. Structure-based inhibitor design of AccD5/AccD6, essential carboxyltransferases of Mycobacterium tuberculosis. FASEB J.33,839–834 (2008).
    • 129  Kurth DG, Gago GM, Iglesia Adl et al. Accase 6 is the essential acetyl-CoA carboxylase involved in fatty acid and mycolic acid biosynthesis in mycobacteria. Microbiology155,2664 (2009).
    • 130  Levert KL, Waldrop GL, Stephens JM. A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. J. Biol. Chem.277(19),16347–16350 (2002).
    • 131  Levert KL, Waldrop GL. A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase. Biochem. Biophys. Res. Commun.291(5),1213–1217 (2002).
    • 132  Chu M, Mierzwa R, Xu L et al. Structure elucidation of Sch 538415, a novel acyl carrier protein synthase inhibitor from a microorganism. Bioorg. Med. Chem. Lett.13,3827 (2003).
    • 133  Gilbert AM, Kirisits M, Toy P et al. Anthranilate 4H-oxazol-5-ones: novel small molecule antibacterial acyl carrier protein synthase (AcpS) inhibitors. Bioorg. Med. Chem. Lett.14,37–41 (2004).
    • 134  Joseph-McCarthy D, Parris K, Huang A et al. Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors. J. Med. Chem.48,7960–7069 (2005).
    • 135  Liu W, Han C, Hua L, Chen K, Shen X, Jiang H. Characterization and inhibitor discovery of one novel malonyl-CoA: acyl carrier protein transacylase (MCAT) from Helicobacter pylori. FEBS Lett.580(2),697–702 (2006).
    • 136  Price AC, Rock CO, White SW. The 1.3-angstrom-resolution crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Streptococcus pneumoniae. J. Bacteriol.185(14),4136–4143 (2003).
    • 137  Oishi H, Noto T, Sasaki H et al. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot. (Tokyo)35,391–395 (1982).
    • 138  Campbell JW, Cronan JE. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol.55,305–332 (2001).
    • 139  Machutta CA, Bommineni GR, Luckner SR et al. Slow onset inhibition of bacterial beta-ketoacyl-acyl carrier protein synthases by thiolactomycin. J. Biol. Chem.285(9),6161–6169 (2009).
    • 140  Matsumae A, Nomura S, Hata T. Studies on cerulenin. IV. Biological characteristics of cerulenin. J. Antibiot. (Tokyo)17,1 (1964).
    • 141  Li XC, Joshi AS, ElSohly HN et al. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J. Nat. Prod.65(12),1909–1914 (2002).
    • 142  Price AC, Choi K-H, Heath RJ, Li Z, White SW, Rock CO. Inhibition of b-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J. Biol. Chem.276(9),6551–6555 (2001).
    • 143  Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y. Structure of the complex between the antibiotic cerulenin and its target, β-ketoacyl-acyl carrier protein synthase. J. Biol. Chem.274(10),6031–6034 (1999).
    • 144  Morisaki N, Funabashi H, Shimazawa R et al. Effect of side-chain structure on inhibition of yeast fatty-acid synthase by cerulenin analogues. Eur. J. Biochem.211,111–115 (1993).
    • 145  Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl Acad. Sci. USA97(7),3450–3454 (2000).
    • 146  Thupari JN, Kim EK, Moran TH, Ronnett GV, Kuhajda FP. Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass. Am. J. Physiol. Endocrinol. Metab.287(1),E97–E104 (2004).
    • 147  Wang X, Lin J, Chen Y et al. Novel fatty acid synthase (FAS) inhibitors: design, synthesis, biological evaluation, and molecular docking studies. Bioorg. Med. Chem.17(5),1898–1904 (2009).
    • 148  Wang X, Zhao G, Chen Y et al. 1-oxo-3-substitute-isothiochroman-4-carboxylic acid compounds: synthesis and biological activities of FAS inhibition. Bioorg. Med. Chem. Lett.19(3),770–772 (2009).
    • 149  Liu X, Shi Y, Giranda VL, Luo Y. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis. Mol. Cancer Ther.5(3),494–501 (2006).
    • 150  Cha SH, Hu Z, Chohnan S, Lane MD. Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle. Proc. Natl Acad. Sci. USA102(41),14557–14562 (2005).
    • 151  Tu Y, Thupari JN, Kim EK et al. C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology146(1),486–493 (2005).
    • 152  Zhang YM, Hurlbert J, White SW, Rock CO. Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. J. Biol. Chem.281(25),17390–17399 (2006).
    • 153  Miyakawa S, Suzuki K, Noto T, Harada Y, Okazaki H. Thiolactomycin, a new antibitoic. IV. Biological properties and chemotherapeutic activity in mice. J. Antibiot. (Tokyo)35,411–419 (1982).
    • 154  Omura S, Iwai Y, Nakagawa A et al. Thiotetromycin, a new antibiotic. Taxonomy, production, isolation, and physicochemical and biological properties. J. Antibiot. (Tokyo)36,109–114 (1983).
    • 155  McFadden JM, Medghalchi SM, Thupari JN et al. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem.48(4),946–961 (2005).
    • 156  Rivkin A, Kim YR, Goulet MT et al. 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors. Bioorg. Med. Chem. Lett.16(17),4620–4623 (2006).
    • 157  Zeng XF, Li WW, Fan HJ et al. Discovery of novel fatty acid synthase (FAS) inhibitors based on the structure of ketoaceyl synthase (KS) domain. Bioorg. Med. Chem. Lett.21(16),4742–4744 (2011).
    • 158  Kodali S, Galgoci A, Young K et al. Determination of selectivity and efficacy of fatty acid synthesis inhibitors. J. Biol. Chem.280,1669–1669 (2005).
    • 159  Young K, Jayasuriya H, Ondeyka JG et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob. Agents Chemother.50(2),519 (2006).
    • 160  Wang J, Soisson SM, Young K et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature441(7091),358–361 (2006).▪▪ Discovery of one of the most potent inhibitors of fatty acid synthases (FAS).
    • 161  Wang J, Kodali S, Lee SH et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl Acad. Sci. USA104(18),7612–7616 (2007).
    • 162  Wang J, Lee V, Sintim HO. Efforts towards the identification of simpler platensimycin analogues – the total synthesis of oxazinidinyl platensimycin. Chem. Eur. J.15,2747 (2009).
    • 163  Shen HC, Ding FX, Singh SB et al. Synthesis and biological evaluation of platensimycin analogs. Bioorg. Med. Chem. Lett.19(6),1623–1627 (2009).
    • 164  Nicolaou KC, Stepan AF, Lister T et al. Design, synthesis, and biological evaluation of platensimycin analogues with varying degrees of molecular complexity. J. Am. Chem. Soc.130(39),13110–13119 (2008).
    • 165  Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural product assembly lines. Nat. Prod. Rep.29,37–59 (2012).
    • 166  Wu M, Singh SB, Wang J et al. Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes. Proc. Natl Acad. Sci. USA108(13),5378–5383 (2011).▪▪ Demonstrates that the potent FAS inhibitor, platensimycin, has antidiabetes properties.
    • 167  Burcelin R, Serino M, Chabo C, Blasco-Baque V, Amar J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol.48(4),257–273 (2011).
    • 168  He X, Reynolds KA. Purification, characterization, and identification of novel inhibitors of the b-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Antimicrob. Agents Chemother.46(5),1310 (2002).
    • 169  Nie Z, Perretta C, Lu J et al. Structure-based design, synthesis, and study of potent inhibitors of b-ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J. Med. Chem.48,1596–1609 (2005).
    • 170  Lee JY, Jeong KW, Lee JU, Kang DI, Kim Y. Novel E. coli beta-ketoacyl-acyl carrier protein synthase III inhibitors as targeted antibiotics. Bioorg. Med. Chem.17(4),1506–1513 (2009).
    • 171  Lee JY, Jeong KW, Shin S, Lee JU, Kim Y. Antimicrobial natural products as beta-ketoacyl-acyl carrier protein synthase III inhibitors. Bioorg. Med. Chem.17(15),5408–5413 (2009).
    • 172  Patel MP, Liu WS, West J, Tew D, Meek TD, Thrall SH. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Biochemistry44(50),16753–16765 (2005).
    • 173  Price AC, Zhang YM, Rock CO, White SW. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure12(3),417–428 (2004).
    • 174  Silva RG, de Carvalho LP, Blanchard JS, Santos DS, Basso LA. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms. Biochemistry45(43),13064–13073 (2006).
    • 175  Wang X, Tian WX. Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem. Biophys. Res. Commun.288(5),1200–1206 (2001).
    • 176  Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem. Pharmacol.66(10),2039–2047 (2003).
    • 177  Zhang Y-M, Rock CO. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase. J. Biol. Chem.279(30),30994–31001 (2004).
    • 178  Yang L, Liu Y, Sternberg C, Molin S. Evaluation of enoyl-acyl carrier protein reductase inhibitors as pseudomonas aeruginosa quorum-quenching reagents. Molecules15(2),780–792 (2010).
    • 179  Kumar G, Parasuraman P, Sharma SK et al. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J. Med. Chem.50(11),2665–2675 (2007).
    • 180  Wang H, Cronan JE. Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J. Biol. Chem.279(33),34489 (2004).
    • 181  Kass LR. The antibacterial activity of 3-decynoyl-N-acetylcysteamine: inhibition in vivo of b-hydroxydecanoyl thioester dehydrase. J. Biol. Chem.243(12),3223–3228 (1968).
    • 182  Morisaki M, Bloch K. Inhibition of β-hydroxydecanoyl thioester dehydrase by some allenic acids and their thioesters. Bioorg. Chem.1,188–193 (1971).
    • 183  Sharma SK, Kapoor M, Ramya TNC et al. Identification, characterization, and inhibition of Plasmodium falciparum b-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J. Biol. Chem.278(46),45661–45671 (2003).
    • 184  Lu H, Tonge PJ. Mechanism and inhibition of the FabV enoyl-ACP reductase from Burkholderia mallei. Biochemistry49(6),1281–1289 (2010).
    • 185  Heath RJ, Rock CO. A triclosan-resistant bacterial enzyme. Nature406,145–146 (2000).
    • 186  Rozwarski DA, Vilcheze C, Sugantino M, Bittman R, Sacchettini JC. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. J. Biol. Chem.274(22),15582–15589 (1999).
    • 187  Parikh S, Moynihan DP, Xiao G, Tonge PJ. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Biochemistry38(41),13623–13634 (1999).
    • 188  Rafi S, Novichenok P, Kolappan S et al. Structure of acyl carrier protein bound to FabI, the FASII enoyl reductase from Escherichia coli. J. Biol. Chem.281(51),39285–39293 (2006).
    • 189  Banerjee A, Dubnau E, Quemard A et al. ihA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263,227–230 (1994).
    • 190  Heath RJ, Yu Y-T, Shapiro MA, Olson E, Rock CO. Broad-spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem.273,30316–3032 (1998).
    • 191  Baldock C, de Boer GJ, Rafferty JB, Stuitje AR, Rice DW. Mechanism of action of diazaborines. Biochem. Pharm.55,1541–1549 (1998).
    • 192  Davis MC, Franzblau SG, Martin AR. Synthesis and evaluation of benzodiazaborine compounds against M. tuberculosis H37Rvin vitro. Bioorg. Med. Chem. Lett.8,843–846 (1998).
    • 193  Payne DJ, Miller WH, Berry V et al. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother.46(10),3118–3124 (2002).
    • 194  Seefeld MA, Miller WH, Newlander KA et al. Indole naphthyridinones as inhibitors of bacterial enoyl-ACP reductases FabI and FabK. J. Med. Chem.46,1627 (2003).
    • 195  Hevener KE, Mehboob S, Su PC et al. Discovery of a novel and potent class of F. tularensis enoyl-reductase (FabI) inhibitors by molecular shape and electrostatic matching. J. Med. Chem.55(1),268–279 (2012).
    • 196  Vilcheze C, Jacobs WR Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol.61,35–50 (2007).
    • 197  Mdluli K, Slayden RA, Zhu Y et al. Inhibition of a Mycobacterium tuberculosis -ketoacyl ACP synthase by isoniazid. Science280,1607–1610 (1998).
    • 198  Ghosh AK, Xi K. Total synthesis of (-)-platensimycin, a novel antibacterial agent. J. Org. Chem.74(3),1163–1170 (2009).
    • 199  Argyrou A, Vetting MW, Aladegbami B, Blanchard JS. Mycobacterium tuberculosisdihydrofolate reductase is a target for isoniazid. Nat. Struct. Mol. Biol.13,408–413 (2006).
    • 200  Rouse DA, Li Z, Bai G-H, Morris. SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother.39(11),2472–2477 (1995).
    • 201  DeBarber AE, Mdluli K, Bosman M, Bekker L-G, Barry CE 3rd. Ethionamide activation and sensitivity in multidrugresistant Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA97(17),9677–9682 (2000).
    • 202  Lu H, Tonge PJ. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc. Chem. Res.41(1),11–20 (2008).
    • 203  Baldock C, Rafferty JB, Sedelnikova SE et al. A mechanism of drug action revealed by structural studies of enoyl reductase. Science274,2107–2110 (1996).
    • 204  Roujeinikova A, Sedelnikova S, de Boer GJ et al. Inhibitor binding studies on enoyl reductase reveal conformational changes related to substrate recognition. J. Biol. Chem.274,30811–30817 (1999).
    • 205  de Boer GJ, Pielage GJ, Nijkamp HJ et al. Molecular genetic analysis of enoyl-acyl carrier protein reductase inhibition by diazoborine. Mol. Microbiol.31,443–450 (1999).
    • 206  Aiello AE, Larson E. Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect. Dis.3(8),501–506 (2003).
    • 207  Ward WHJ, Holdgate GA, Rowsell S et al. Kinetic and structural characteristics of the inhibition of enoyl (acyl carrier protein) reductase by triclosan. Biochemistry38,12514–12525 (1999).
    • 208  McMurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett.166,305–309 (1998).
    • 209  Sullivan TJ, Truglio JJ, Boyne ME et al. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol.1(1),43–53 (2006).
    • 210  Sivaraman S, Sullivan TJ, Johnson F et al. Inhibition of the bacterial enoyl reductase FabI by triclosan: a structure-reactivity analysis of FabI inhibition by triclosan analogues. J. Med. Chem.47(3),509–518 (2004).
    • 211  Liu BQ, Wang YQ, Fillgrove KL, Anderson VE. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol.49(3),187–193 (2002).
    • 212  Karlowsky JA, Kaplan N, Hafkin B, Hoban DJ, Zhanel GG. AFN-1252, a FabI inhibitor, demonstrates a Staphylococcus-specific spectrum of activity. Antimicrob. Agents Chemother.53(8),3544–3548 (2009).
    • 213  Bogdanovich T, Clark C, Kosowska-Shick K, Dewasse B, McGhee P, Appelbaum PC. Antistaphylococcal activity of CG400549, a new experimental FabI inhibitor, compared with that of other agents. Antimicrob. Agents Chemother.51(11),4191–4195 (2007).
    • 214  Park HS, Yoon YM, Jung SJ, Kim CM, Kim JM, Kwak JH. Antistaphylococcal activities of CG400549, a new bacterial enoyl-acyl carrier protein reductase (FabI) inhibitor. J. Antimicrob. Chemother.60(3),568–574 (2007).
    • 215  Beigneux AP, Kosinski C, Gavino B, Horton JD, Skarnes WC, Young SG. ATP-citrate lyase deficiency in the mouse. J. Biol. Chem.279(10),9557–9564 (2004).
    • 216  Sugden MC, Holness MJ. Therapeutic potential of the mammalian pyruvate dehydrogenase kinases in the prevention of hyperglycaemia. Curr. Drug Targets Immune Endocr. Metabol. Disord.2(2),151–165 (2002).
    • 217  Bauer DE, Hatzivassiliou G, Zhao FP, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene24(41),6314–6322 (2005).
    • 218  Watson JA, Fang M, Lowenste JM. Tricarballylate and hydroxycitrate - substrate and inhibitor of ATP – citrate oxaloacetate lyase. Arch. Biochem. Biophys.135(1–2),209–217 (1969).
    • 219  Heymsfield SB, Allison DB, Vasselli JR, Pietrobelli A, Greenfield D, Nunez C. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent – a randomized controlled trial. J. Am. Med. Assoc.280(18),1596–1600 (1998).
    • 220  Ohia SE, Opere CA, LeDay AM, Bagchi M, Bagchi D, Stohs SJ. Safety and mechanism of appetite suppression by a novel hydroxycitric acid extract (HCA-SX). Mol. Cell. Biochem.238(1–2),89–103 (2002).
    • 221  Pearce NJ, Yates JW, Berkhout TA et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids – hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J.334,113–119 (1998).
    • 222  Ma ZP, Chu CH, Cheng D. A novel direct homogeneous assay for ATP citrate lyase. J. Lipid Res.50(10),2131–2135 (2009).
    • 223  Hatzivassiliou G, Zhao FP, Bauer DE et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell8(4),311–321 (2005).
    • 224  Oleynek JJ, Barrow CJ, Burns MP et al. Anthrones, naturally-occurring competitive inhibitors of adenosine-triphosphate-citrate lyase. Drug Dev. Res.36(1),35–42 (1995).
    • 225  Chu KY, Lin Y, Hendel A, Kulpa JE, Brownsey RW, Johnson JD. ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J. Biol. Chem.285(42),32606–32615 (2010).
    • 226  Pemble CWT, Johnson LC, Kridel SJ, Lowther WT. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat. Struct. Mol. Biol.14(8),704–709 (2007).
    • 227  Hadvary P, Sidler W, Meister W, Vetter W, Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active-site serine of pancreatic lipase. J. Biol. Chem.266(4),2021–2027 (1991).
    • 228  Hill JO, Hauptman J, Anderson JW et al. Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-y study. Am. J. Clin. Nutr.69(6),1108–1116 (1999).
    • 229  Yang PY, Liu K, Ngai MH, Lear MJ, Wenk MR, Yao SQ. Activity-based proteome profiling of potential cellular targets of orlistat – an FDA-approved drug with anti-tumor activities. J. Am. Chem. Soc.132(2),656–666 (2010).
    • 230  Martinez-Villaluenga C, Rupasinghe SG, Schuler MA, de Mejia EG. Peptides from purified soybean beta-conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS J.277(6),1481–1493 (2010).
    • 231  Richardson RD, Smith JW. Novel antagonists of the thioesterase domain of human fatty acid synthase. Mol. Cancer Ther.6(7),2120–2126 (2007).
    • 232  Zhang W, Chakravarty B, Zheng F et al. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-gamma-linolenic acid. Proc. Natl Acad. Sci. USA108(38),15757–15762 (2011).▪ Demonstrates that dietary long-chain polyunsaturated fatty acids could inhibit thioesterase domain of FAS.
    • 233  Grimes KD, Lu YJ, Zhang YM et al. Novel acyl phosphate mimics that target PlsY, an essential acyltransferase in gram-positive bacteria. ChemMedChem3(12),1936–1945 (2008).
    • 234  Ramsay RR, Gandour RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. Biochim. Biophys. Acta1546(1),21–43 (2001).
    • 235  Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol. Aspects Med.25(5–6),495–520 (2004).▪ Review of the history and genetic study of CPT and the medical implication for its deficiency.
    • 236  Foster DW. The role of the carnitine system in human metabolism. Ann. NY Acad. Sci.1033,1–16 (2004).
    • 237  Kuhajda FP, Ronnett GV. Modulation of carnitine palmitoyltransferase-1 for the treatment of obesity. Curr. Opin. Investig. Drugs8(4),312–317 (2007).
    • 238  Ronnett GV, Kleman AM, Kim EK, Landree LE, Tu Y. Fatty acid metabolism, the central nervous system, and feeding. Obesity14(Suppl. 5),201S–207S (2006).
    • 239  Anderson RC, Balestra M, Bell PA et al. Antidiabetic agents: a new class of reversible carnitine palmitoyltransferase I inhibitors. J. Med. Chem.38(18),3448–3450 (1995).
    • 240  Jenkins DL, Griffith OW. Antiketogenic and hypoglycemic effects of aminocarnitine and acylaminocarnitines. Proc. Natl Acad. Sci. USA83(2),290–294 (1986).
    • 241  Giannessi F, Pessotto P, Tassoni E et al. Discovery of a long-chain carbamoyl aminocarnitine derivative, a reversible carnitine palmitoyltransferase inhibitor with antiketotic and antidiabetic activity. J. Med. Chem.46(2),303–309 (2003).
    • 242  Rufer AC, Thoma R, Benz J et al. The crystal structure of carnitine palmitoyltransferase 2 and implications for diabetes treatment. Structure14(4),713–723 (2006).
    • 243  Anderson RC. Carnitine palmitoyltransferase: a viable target for the treatment of NIDDM? Curr. Pharm. Des.4(1),1–16 (1998).
    • 244  Thupari JN, Pinn ML, Kuhajda FP. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem. Biophys. Res. Commun.285(2),217–223 (2001).
    • 245  Altenbern RA. Cerulenin-inhibited cells of Staphylococcus aureus resume growth when supplemented with either a saturated or an unsaturated fatty acid. Antimicrob. Agents Chemother.11,574–576 (1977).
    • 246  Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature458(7234),83–86 (2009).
    • 247  Parsons JB, Frank MW, Subramanian C, Saenkham P, Rock CO. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors. Proc. Natl Acad. Sci. USA108(37),15378–15383 (2011).
    • 248  Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE5(3),e9836 (2010).
    • 249  Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature474(7351),327–336 (2011).
    • 250  Parker RA, Flint OP, Mulvey R et al. Endoplasmic reticulum stress links dyslipidemia to inhibition of proteasome activity and glucose transport by HIV protease inhibitors. Mol. Pharmacol.67(6),1909–1919 (2005).
    • 251  Alexander JW. Immunonutrition: the role of omega-3 fatty acids. Nutrition14(7–8),627–633 (1998).
    • 252  Pommerville JC. Fundamentals of Microbiology. Jones & Bartlett Learning, Sudbury, MA, USA, 115 (2008).
    • 253  Daffé M, Reyrat J-M. The Mycobacterial Cell Envelope. ASM Press, Washington, DC, USA, 4 (2008).
    • 254  He X, Reeve AM, Desai UR, Kellogg GE, Reynolds KA. 1,2-dithiole-3-ones as potent inhibitors of the bacterial 3-ketoacyl acyl carrier protein synthase III (FabH). Antimicrob. Agents Chemother.48(8),3093 (2004).
    • 255  Khandekar SS, Gentry DR, Aller GSV et al. Identification, substrate specificity, and inhibition of the Streptococcus pneumoniae b-ketoacyl-acyl carrier protein synthase III (FabH). J. Biol. Chem.276(32),30024 (2001).
    • 256  Noto T, Miyakawa S, Oishi H, Endo H, Okazaki. H. Thiolactomycin, a new antibiotic. III. In vitro antibacterial activity J. Antibiot. (Tokyo)35,401 (1982).
    • 257  Rosner JL. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob. Agents Chemother.37,2251–2253 (1993).
    • 258  Rawat R, Whitty A, Tonge PJ. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl Acad. Sci. USA100(24),13881–13886 (2003).
    • 259  Baulard AR, Betts JC, Engohang-Ndong J et al. Activation of the pro-drug ethionamide is regulated in Mycobacteria. Proc. Natl Acad. Sci. USA275(36),28326–28331 (2000).
    • 260  Wang F, Langley R, Gulten G et al. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med.204(1),73–78 (2007).
    • 261  Jang KP, Kim CH, Na SW et al. 7-phenylplatensimycin and 11-methyl-7-phenylplatensimycin: more potent analogs of platensimycin. Bioorg. Med. Chem. Lett.20(7),2156–2158 (2009).
    • 262  Patra M, Gasser G, Pinto A et al. Synthesis and biological evaluation of chromium bioorganometallics based on the antibiotic platensimycin lead structure. ChemMedChem4(11),1930–1938 (2009).
    • 263  Tiefenbacher K, Gollner A, Mulzer J. Syntheses and antibacterial properties of iso-platencin, Cl-iso-platencin and Cl-platencin: identification of a new lead structure. Chem. Eur. J.16(31),9616–9622 (2010).
    • 264  Jang KP, Kim CH, Na SW, Kim H, Kang H, Lee E. Isoplatensimycin: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett.19(16),4601–4602 (2009).
    • 265  Nicolaou KC, Tang Y, Wang J, Stepan AF, Li A, Montero A. Total synthesis and antibacterial properties of carbaplatensimycin. J. Am. Chem. Soc.129(48),14850–14851 (2007).
    • 266  Nicolaou KC, Lister T, Denton RM, Montero A, Edmonds DJ. Adamantaplatensimycin: a bioactive analogue of platensimycin. Angew. Chem. Int. Ed. Engl.46(25),4712–4714 (2007).
    • 267  Zhang C, Ondeyka J, Herath K et al. Platensimycin and platencin congeners from Streptomyces platensis. J. Nat. Prod.74(3),329–340 (2011).
    • 268  Singh SB, Jayasuriya H, Ondeyka JG et al. Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. J. Am. Chem. Soc.128(36),11916–11920 (2006).
    • 269  Zhang CW, Ondeyka J, Zink DL, Burgess B, Wang J, Singh SB. Isolation, structure and fatty acid synthesis inhibitory activities of platensimycin B-1-B-3 from Streptomyces platensis. Chem. Comm. (40),5034–5036 (2008).
    • 270  Wang J, Sintim HO. Dialkylamino-2,4-dihydroxybenzoic acids as easily synthesized analogues of platensimycin and platencin with comparable antibacterial properties. Chem. Eur. J.17(12),3352–3357 (2011).
    • 271  Barykina OV, Rossi KL, Rybak MJ, Snider BB. Synthesis and antibacterial properties of (-)-nor-platencin. Org. Lett.11(22),5334–5337 (2009).
    • 272  Singh SB, Jayasuriya H, Herath KB et al. Isolation, enzyme-bound structure, and activity of platensimycin A1 from Streptomyces platensis. Tetra. Lett.50(37),5182–5185 (2009).
    • 273  Zhang CW, Ondeyka J, Guan ZQ et al. Isolation, structure and biological activities of platensimycin B-4 from Streptomyces platensis. J. Antibiotics62(12),699–702 (2009).