We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Hypoxia inducible factor pathway inhibitors as anticancer therapeutics

    Sarah K Burroughs

    Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Room 313, Petit Science Center, 100 Piedmont Ave, Atlanta, GA, 30303-3083, USA

    ,
    Stefan Kaluz

    Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA

    ,
    Danzhu Wang

    Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Room 313, Petit Science Center, 100 Piedmont Ave, Atlanta, GA, 30303-3083, USA

    ,
    Ke Wang

    Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Room 313, Petit Science Center, 100 Piedmont Ave, Atlanta, GA, 30303-3083, USA

    ,
    Erwin G Van Meir

    Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA

    Authors contributed equally

    Search for more papers by this author

    &
    Binghe Wang

    * Author for correspondence

    Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Room 313, Petit Science Center, 100 Piedmont Ave, Atlanta, GA, 30303-3083, USA.

    Published Online:https://doi.org/10.4155/fmc.13.17

    Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein–protein interactions.

    Papers of special note have been highlighted as: ▪▪ of considerable interest

    References

    • VaupelP, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev.26(2),225–239 (2007).
    • Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res.61(24),8903–8908 (2001).
    • Matsumoto S. Imaging cycling tumor hypoxia. Cancer Res.70(24),10019–10023 (2010).
    • Belozerov VE, Van Meir EG. Inhibition of hypoxia-inducible factor-1 signaling. Curr. Opin. Investig. Drugs7(12),1067–1076 (2006).
    • Wilson W, Hay M. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer11(6),393–410 (2011).
    • Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat. Rev. Cancer4,437–447 (2004).
    • Graeber TG, Osmanian C, Jacks T et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature379(6560),88–91 (1996).▪▪ First study to show that hypoxia selects for tumor cells with mutations in the p53 gene that prevent hypoxia-induced apoptosis.
    • Subarsky P, Hill RP. The hypoxic tumor microenvironment and metastatic progression. Clin. Exp. Metastasis20(3),237–250 (2003).
    • Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem.270(3),1230–1237 (1995).
    • 10  Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92(12),5510–5514 (1995).▪▪ Reports the original cloning of hypoxia inducible factor-1α.
    • 11  Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J.22(16),4082–4090 (2003).
    • 12  Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem.278(33),30772–30780 (2003).
    • 13  Maxwell PH, Wiesener MS, Chang GW et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399(6733),271–275 (1999).
    • 14  Ivan M, Kondo K, Yang HF et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292(5516),464–468 (2001).▪▪ Along with [13], describes the discovery of VHL as the substrate-recognition unit of the E3 ubiquitin ligase responsible for oxygen-dependent hypoxia inducible factor-α degradation.
    • 15  Jeong JW, Bae MK, Ahn MY et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell111(5),709–720 (2002).
    • 16  Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci. STKE2005(306),re12 (2005).
    • 17  Kimura H, Weisz A, Ogura T et al. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem.276(3),2292–2298 (2001).
    • 18  Fath DM, Kong X, Liang D et al. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-α. J. Biol. Chem.281(19),13612–13619 (2006).
    • 19  Dayan F, Roux D, Brahimi-Horn MC, Pouyssegur J, Mazure NM. The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1α. Cancer Res.66(7),3688–3698 (2006).
    • 20  Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell30(4),393–402 (2008).
    • 21  Kaelin WG Jr. ROS: really involved in oxygen sensing. Cell Metab.1(6),357–358 (2005).
    • 22  Czibik G. Complex role of the HIF system in cardiovascular biology. J. Mol. Med.88(11),1101–1111 (2010).
    • 23  Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell40(2),294–309 (2010).
    • 24  Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1 alpha. Science324(5924),261–265 (2009).
    • 25  Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature462(7274),U739–U752 (2009).
    • 26  Koivunen P, Lee S, Duncan CG et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature483(7390),U485–U144 (2012).▪▪ Report showing that 2-hydroxyglutarate produced in IDH mutant tumor cells activates prolyl hydroxylase and destabilizes hypoxia inducible factor.
    • 27  Bardos J, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim. Biophys. Acta25(2),107–120 (2005).
    • 28  Déry M-A, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell. Biol.37(3),535–540 (2005).
    • 29  Flügel D, Görlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1α and mediates its destabilization in a VHL-independent manner. Mol. Cell. Biochem.27(9),3253–3265 (2007).
    • 30  Mottet D, Dumont V, Deccache Y et al. Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J. Biol. Chem.278(33),31277–31285 (2003).
    • 31  Flügel D, Görlach A, Kietzmann T. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α. Blood119(5),1292–1301 (2012).
    • 32  Xu D, Yao Y, Lu L, Costa M, Dai W. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem.285(50),38944–38950 (2010).
    • 33  Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol. Cell40(4),509–520 (2010).
    • 34  Minet E, Arnould T, Michel G et al. ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett.468(1),53–58 (2000).
    • 35  Gradin K, Takasaki C, Fujii-Kuriyama Y, Sogawa K. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem.277(26),23508–23514 (2002).
    • 36  Mottet D, Ruys SPD, Demazy C, Raes M, Michiels C. Role for casein kinase 2 in the regulation of HIF-1 activity. Int J. Cancer117(5),764–774 (2005).
    • 37  Richard DE, Berra E, Gothié E, Roux D, Pouysségur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriptional activity of HIF-1. J. Biol. Chem.274(46),32631–32637 (1999).
    • 38  Mylonis I, Chachami G, Samiotaki M et al. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1α. J. Biol. Chem.281(44),33095–33106 (2006).
    • 39  Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J. Cell Sci.123(17),2976–2986 (2010).
    • 40  Van De Sluis B, Mao X, Zhai Y et al. COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. J. Clin. Invest.120(6),2119–2130 (2010).
    • 41  Cho H, Ahn D-R, Park H, Yang EG. Modulation of p300 binding by posttranslational modifications of the C-terminal activation domain of hypoxia-inducible factor-1α. FEBS Lett.581(8),1542–1548 (2007).
    • 42  Huang LE, Bunn HF. Hypoxia-inducible factor and its biomedical relevance. J. Biol. Chem.278(22),19575–19578 (2003).
    • 43  Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell. Biochem.23(24),9361–9374 (2003).
    • 44  Raval RR, Lau KW, Tran MGB et al. Contrasting properties of HIF-1 and HIF-2 in Von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol.25(13),5675–5686 (2005).
    • 45  Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat. Rev. Cancer8(12),967–975 (2008).
    • 46  Gordan JD, Lal P, Dondeti VR et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell14(6),435–446 (2008).
    • 47  Xu J, Wang B, Xu Y et al. Epigenetic regulation of HIF-1 alpha in renal cancer cells involves HIF-1 alpha/2 alpha binding to a reverse hypoxia-response element. Oncogene31(8),1065–1072 (2012).
    • 48  Giatromanolaki A, Koukourakis MI, Sivridis E et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumors and survival. Br. J. Cancer85(6),881–890 (2001).
    • 49  Franovic A, Holterman CE, Payette J, Lee S. Human cancers converge at the HIF-2α oncogenic axis. Proc. Natl Acad. Sci. USA106(50),21306–21311 (2009).
    • 50  Biswas S, Troy H, Leek R et al. Effects of HIF-1alpha and HIF-2alpha on growth and metabolism of clear-cell renal cancer 786-0 xenografts. J. Oncol.2010,757908 (2010).
    • 51  Sowter HM, Raval RR, Moore JW, Ratcliffe PJ, Harris AL. Predominant role of hypoxia-inducible transcription factor (HIF)-1alpha versus HIF-2alpha in regulation of the transcriptional response to hypoxia. Cancer Res.63(19),6130–6134 (2003).
    • 52  Aprelikova O, Wood M, Tackett S, Chandramouli GV, Barrett JC. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res.66(11),5641–5647 (2006).
    • 53  Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1 alpha. Mol. Cell38(6),864–878 (2010).
    • 54  Dioum EM, Chen R, Alexander MS et al. Regulation of hypoxia-inducible factor 2 alpha signaling by the stress-responsive deacetylase sirtuin 1. Science324(5932),1289–1293 (2009).
    • 55  Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2 alpha promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell11(4),335–347 (2007).
    • 56  Moeller BJ, Dreher MR, Rabbani ZN et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell8(2),99–110 (2005).
    • 57  An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha. Nature392(6674),405–408 (1998).
    • 58  Bertout JA, Majmundar AJ, Gordan JD et al. HIF2 alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc. Natl Acad. Sci. USA106(34),14391–14396 (2009).
    • 59  Hadjipanayis CG, Van Meir EG. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J. Mol. Med.87(4),363–374 (2009).
    • 60  Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer102(5),789–795 (2010).
    • 61  Soeda A, Park M, Lee D et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 alpha. Oncogene28(45),3949–3959 (2009).
    • 62  Li Z, Bao S, Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell15(6),501–513 (2009).
    • 63  Pietras A, Hansford LM, Johnsson AS et al. HIF-2 alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc. Natl Acad. Sci. USA106(39),16805–16810 (2009).
    • 64  Gustafsson MV, Zheng XW, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell9(5),617–628 (2005).
    • 65  Covello KL, Kehler J, Yu HW et al. HIF-2 alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev.20(5),557–570 (2006).
    • 66  Moreno-Manzano V, Rodriguez-Jimenez FJ, Acena-Bonilla JL et al. FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J. Biol Chem.285(2),1333–1342 (2010).
    • 67  Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev.17(1),126–140 (2003).
    • 68  Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • 69  Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res.38(7),2332–2345 (2010).
    • 70  Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res.37(14),4587–4602 (2009).
    • 71  Tanimoto K, Tsuchihara K, Kanai A et al. Genome-wide identification and annotation of HIF-1α binding sites in two cell lines using massively parallel sequencing. HUGO J.4(1–4),35–48 (2010).
    • 72  Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood117(23),e207–e217 (2011).
    • 73  Mole DR, Blancher C, Copley RR et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem.284(25),16767–16775 (2009).
    • 74  Simon MP, Tournaire R, Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J. Cell Physiol.217(3),809–818 (2008).
    • 75  Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell3(4),347–361 (2003).
    • 76  Lofstedt T, Jogi A, Sigvardsson M et al. Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. J. Biol. Chem.279(38),39223–39231 (2004).
    • 77  Grosfeld A, André J, Hauguel-De Mouzon S, Berra E, Pouysségur J, Guerre-Millo M. Hypoxia-inducible factor 1 transactivates the human leptin gene promoter. J. Biol. Chem.277(45),42953–42957 (2002).
    • 78  Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med.182(6),1683–1693 (1995).
    • 79  Huang Y, Hickey RP, Yeh JL et al. Cardiac myocyte-specific HIF-1α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J.18(10),1138–1140 (2004).
    • 80  Han Z-B, Ren H, Zhao H et al. Hypoxia-inducible factor (HIF)-1α directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis29(10),1853–1861 (2008).
    • 81  Ceradini DJ, Kulkarni AR, Tepper OM et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10(8),858–864 (2004).
    • 82  Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem.270(22),13333–13340 (1995).
    • 83  Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.62(12),3387–3394 (2002).
    • 84  Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3´ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA88(13),5680–5684 (1991).
    • 85  Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y. Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J. Biol. Chem.277(49),47014–47021 (2002).
    • 86  Koshiji M, To KKW, Hammer S et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell17(6),793–803 (2005).
    • 87  Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1: interaction between H-ras and hypoxia. J. Biol. Chem.276(12),9519–9525 (2001).
    • 88  Yoon DY, Buchler P, Saarikoski ST, Hines OJ, Reber HA, Hankinson O. Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem. Biophys. Res. Commun.288(4),882–886 (2001).
    • 89  Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem.276(46),43407–43412 (2001).
    • 90  Semenza GL, Jiang B-H, Leung SW et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem.271(51),32529–32537 (1996).
    • 91  Sonveaux P, Copetti T, De Saedeleer CJ et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE7(3),e33418 (2012).
    • 92  Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem.269(38),23757–23763 (1994).
    • 93  Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol. Cell. Biol.24(13),6076–6083 (2004).
    • 94  Synnestvedt K, Furuta GT, Comerford KM et al. Ecto-5´-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest.110(7),993–1002 (2002).
    • 95  Huang Y, Hickey RP, Yeh JL et al. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J.18(10),1138–1140 (2004).
    • 96  Krishnamachary B, Berg-Dixon S, Kelly B et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res.63(5),1138–1143 (2003).
    • 97  Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ. Res.90(7),784–791 (2002).
    • 98  Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene24(6),1043–1052 (2005).
    • 99  Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor pVHL. Nature425,307–311 (2003).
    • 100  Erler JT, Bennewith KL, Nicolau M et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature440(7088),1222–1226 (2006).
    • 101  Yang MH, Wu KJ. TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell Cycle7(14),2090–2096 (2008).
    • 102  Wykoff CC, Beasley NJP, Watson PH et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res.60(24),7075–7083 (2000).
    • 103  Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE. HIF-1[alpha] induces cell cycle arrest by functionally counteracting Myc. EMBO J.23(9),1949–1956 (2004).
    • 104  Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1α and insulin-like growth factor 2. Cancer Res.59(16),3915–3918 (1999).
    • 105  Krishnamurthy P, Ross DD, Nakanishi T et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J. Biol. Chem.279(23),24218–24225 (2004).
    • 106  Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem.283(52),36542–36552 (2008).
    • 107  Mathieu J, Zhang Z, Zhou W et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res.71(13),4640–4652 (2011).
    • 108  Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene29,625–634 (2009).
    • 109  Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol.23(5),1011–1027 (2005).
    • 110  Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature438(7070),937–945 (2005).
    • 111  Liao D, Johnson R. Hypoxia. A key regulator of angiogenesis in cancer. Cancer Metastasis Rev.26(2),281–290 (2007).
    • 112  Jensen R, Ragel B, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1α (HIF-1α) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J. Neurooncol.78(3),233–247 (2006).
    • 113  Kim J-W, Gao P, Dang C. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev.26(2),291–298 (2007).
    • 114  Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell120(4),483–495 (2005).
    • 115  Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumor hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell. Mol. Med.14(4),771–794 (2010).
    • 116  Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumor hypoxia, survival pathway and therapy target. Cell Cycle3(3),159–162 (2004).
    • 117  Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell5(5),429–441 (2004).
    • 118  Moeller B, Richardson R, Dewhirst M. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev.26(2),241–248 (2007).
    • 119  Chandel NS, Mcclintock DS, Feliciano CE et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia. J. Biol. Chem.275(33),25130–25138 (2000).
    • 120  Jung SN, Yang WK, Kim J et al. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis29(4),713–721 (2008).
    • 121  Brown LM, Cowen RL, Debray C et al. Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1. Mol. Pharmacol.69(2),411–418 (2006).
    • 122  Yang DI, Chen SD, Yang YT, Ju TC, Xu JM, Hsu CY. Carbamoylating chemoresistance induced by cobalt pretreatment in C6 glioma cells: putative roles of hypoxia-inducible factor-1. Br. J. Pharmacol.141(6),988–996 (2004).
    • 123  Liu L, Ning X, Sun L et al. Hypoxia-inducible factor-1α contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci.99(1),121–128 (2008).
    • 124  Sasabe E, Zhou X, Li D, Oku N, Yamamoto T, Osaki T. The involvement of hypoxia-inducible factor-1α in the susceptibility to γ-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int. J. Cancer120(2),268–277 (2007).
    • 125  Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist. Updat.14(3),191–201 (2011).
    • 126  Comerford KM, Wallace TJ, Karhausen JR, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res.62(12),3387–3394 (2002).
    • 127  Seagroves TN. The complexity of the HIF-1-dependent hypoxic response in breast cancer presents multiple avenues for therapeutic intervention. In: Pharmaceutical Perspectives of Cancer Therapeutics. Springer Science and Business Media, LLC, NY, USA, 540 (2009).
    • 128  Tan Z, Wu Y, Zhang H, Xiao X. CoCl2-induced chemotherapy resistance in SW480 cells and its mechanism. Zhong Nan Da Xue Xue Bao Yi Xue Ban31(3),345–349 (2006).
    • 129  Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci.33(4),207–214 (2012).
    • 130  Xia Y, Choi H-K, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem.49,24–40 (2012).
    • 131  Kola L, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug. Discov.3(8),1474–1776 (2004).
    • 132  Adams DJ. The valley of death in anticancer drug development: a reassessment. Trends Pharmacol. Sci.33(4),173–180 (2012).
    • 133  Atkuri KR, Herzenberg LA, Herzenberg LA. Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc. Natl Acad. Sci. USA102(10),3756–3759 (2005).
    • 134  Ivanovic Z. Hypoxia or in situ normoxia: the stem cell paradigm. J. Cell. Physiol.219(2),271–275 (2009).
    • 135  Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res.56(6),1194–1198 (1996).
    • 136  Gerweck LE, Kozin SV, Stocks SJ. The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells. Br. J. Cancer79(5–6),838–842 (1999).
    • 137  Wall ME, Wani MC. Camptothecin and taxol: discovery to clinic-thirteenth Bruce F. Cain memorial award lecture. Cancer Res.55(4),753–760 (1995).
    • 138  Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem.260(27),14873–14878 (1985).
    • 139  Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl Acad. Sci. USA99(24),15387–15392 (2002).
    • 140  Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1. Cancer Res.64(4),1475–1482 (2004).
    • 141  Baranello L, Bertozzi D, Fogli MV, Pommier Y, Capranico G. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus. Nucleic Acids Res.38(1),159–171 (2010).
    • 142  Rothenberg ML. Irinotecan (CPT-11): recent developments and future directions – colorectal cancer and beyond. Oncologist6(1),66–80 (2001).
    • 143  Leblanc R, Catley LP, Hideshima T et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res.62(17),4996–5000 (2002).
    • 144  Hideshima T, Richardson P, Chauhan D et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res.61(7),3071–3076 (2001).
    • 145  Hideshima T, Richardson PG, Anderson KC. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther.10(11),2034–2042 (2011).
    • 146  Shin DH, Chun Y-S, Lee DS, Huang LE, Park JW. Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood111(6),3131–3136 (2008).
    • 147  Kaluz S, Kaluzova M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1α C-terminal activation domain. Mol. Cell. Biol.26(15),5895–5907 (2006).
    • 148  Befani C, Vlachostergios P, Hatzidaki E et al. Bortezomib represses HIF-1α protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J. Mol. Med.90(1),45–54 (2012).
    • 149  Bross PF, Kane R, Farrell AT et al. Approval summary for Bortezomib for injection in the treatment of multiple myeloma. Clin. Cancer Res.10(12),3954–3964 (2004).
    • 150  Ueda H, Nakajima H, Hori Y et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot.47(3),301–310 (1994).
    • 151  Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res.241(1),126–133 (1998).
    • 152  Shigematsu N, Ueda H, Takase S, Tanaka H, Yamamoto K, Tada T. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. II. Structure determination. J. Antibiot.47(3),311–314 (1994).
    • 153  Ueda H, Manda T, Matsumoto S et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J. Antibiot.47(3),315–323 (1994).
    • 154  Fath DM, Kong X, Liang D et al. Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-1α. J. Biol. Chem.281(19),13612–13619 (2006).
    • 155  Qian DZ, Kachhap SK, Collis SJ et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res.66(17),8814–8821 (2006).
    • 156  Rini BI. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin. Cancer Res.14(5),1286–1290 (2008).
    • 157  Thomas GV, Tran C, Mellinghoff IK et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat. Med.12(1),122–127 (2006).
    • 158  Hudson CC, Liu M, Chiang GG et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol.22(20),7004–7014 (2002).
    • 159  Zhong H, Chiles K, Feldser D et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res.60(6),1541–1545 (2000).
    • 160  Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther.2(11),1093–1103 (2003).
    • 161  Ghobrial IM, Leleu X, Rubin N et al. Phase II trial of the novel oral Akt inhibitor perifosine in relapsed and/or refractory Waldenstrom macroglobulinemia (WM). J. Clin. Oncol.26(Suppl. 15),8546 (2008).
    • 162  Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy23(2),165–172 (2003).
    • 163  Mabjeesh NJ, Escuin D, Lavallee TM et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell3(4),363–375 (2003).
    • 164  Carbonaro M, O’Brate A, Giannakakou P. Microtubule disruption targets HIF-1α mRNA to cytoplasmic P-bodies for translational repression. J. Cell Biol.192(1),83–99 (2011).
    • 165  Dahut WL, Lakhani NJ, Gulley JL et al. Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol. Ther.5(1),22–27 (2006).
    • 166  Harrison MR, Hahn N, Pili R et al. Phase II study of 2-methoxyestradiol (2ME2) NanoCrystal Dispersion (NCD) in patients with taxane-refractory, metastatic hormone-refractory prostate cancer (HRPC). J. Clin. Oncol.26(Suppl. 15),5173 (2008).
    • 167  Bruce J, Eickhoff J, Pili R et al. A Phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest. New Drugs30(2),794–802 (2012).
    • 168  Formica JV, Waring MJ. Effect of phosphate and amino acids on echinomycin biosynthesis by Streptomyces echinatus. Antimicrob. Agents Chemother.24(5),735–741 (1983).
    • 169  Van Dyke M, Dervan P. Echinomycin binding sites on DNA. Science225(4667),1122–1127 (1984).
    • 170  Nickols NG, Jacobs CS, Farkas ME et al. Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. ACS Chem. Biol.2(8),561–571 (2007).
    • 171  Kong D, Park EJ, Stephen AG et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res.65(19),9047–9055 (2005).
    • 172  Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. J. Cell. Mol. Med.13(9a),2780–2786 (2009).
    • 173  Deboer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic. J. Antibiot.23(9),442–447 (1970).
    • 174  Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA97(20),10832–10837 (2000).
    • 175  Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA91(18),8324–8328 (1994).
    • 176  Dehner A, Furrer J, Richter K, Schuster I, Buchner J, Kessler H. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol. ChemBioChem4(9),870–877 (2003).
    • 177  Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol.11(7),515–528 (2010).
    • 178  Bagatell R, Whitesell L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther.3(8),1021–1030 (2004).
    • 179  Minet E, Mottet D, Michel G et al. Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett.460(2),251–256 (1999).
    • 180  Mabjeesh NJ, Post DE, Willard MT, Kaur B et al. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res.62(9),2478–2482 (2002).
    • 181  Supko JG, Hickman RL, Grever MR, Malspeis L. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol.36(4),305–315 (1995).
    • 182  Neckers LM. Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb. Exp. Pharmacol.172,259–277 (2006).
    • 183  Richardson PG, Chanan-Khan AA, Alsina M et al. Tanespimycin monotherapy in relapsed multiple myeloma: results of a Phase I dose-escalation study. Br. J. Haematol.150(4),438–445 (2010).
    • 184  Solit DB, Osman I, Polsky D et al. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res.14(24),8302–8307 (2008).
    • 185  Ronnen EA, Kondagunta GV, Ishill N et al. A Phase II trial of 17-(allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest. New Drugs24(6),543–546 (2006).
    • 186  Heath EI, Hillman DW, Vaishampayan U et al. A Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin. Cancer Res.14(23),7940–7946 (2008).
    • 187  Pacey S, Wilson RH, Walton M et al. A Phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin. Cancer Res.17(6),1561–1570 (2011).
    • 188  Kaufmann SH, Karp JE, Litzow MR et al. Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica96(11),1619–1626 (2011).
    • 189  Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol.6(2),155–176 (2012).
    • 190  Valkov E, Sharpe T, Marsh M, Greive S, Hyvönen M. Targeting protein–protein interactions and fragment-based drug discovery. In: Fragment-Based Drug Discovery and X-Ray Crystallography. Davies TG, Hyvönen M (Eds). Springer Berlin/Heidelberg, Germany, 145–179 (2012).
    • 191  Verdine GL, Hilinski GJ. All-hydrocarbon stapled peptides as synthetic cell-accessible mini-proteins. Drug Discov. Today Technol.9(1),e41–e47 (2012).
    • 192  Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin. Cancer Res.14(17),5318–5324 (2008).
    • 193  Higueruelo AP, Schreyer A, Bickerton GRJ, Pitt WR, Groom CR, Blundell TL. Atomic interactions and profile of small molecules disrupting protein–protein interfaces: the TIMBAL database. Chem. Biol. Drug Des.74(5),457–467 (2009).
    • 194  Fry DC. Drug-like inhibitors of protein-protein interactions: a structural examination of effective protein mimicry. Curr. Protein Pept. Sci.9(3),240–247 (2008).
    • 195  Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46(1–3),3–26 (2001).
    • 196  M. Monti S, T. Supuran C, De Simone G. Carbonic anhydrase IX as a target for designing novel anticancer drugs. Curr. Med. Chem.19(6),821–830 (2012).
    • 197  Mylonis I, Lakka A, Tsakalof A, Simos G. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem. Biophys. Res. Commun.398(1),74–78 (2010).
    • 198  Nagle D-G, Zhou Y-D. Natural product-based inhibitors of hypoxia-inducible factor-1 (HIF-1). Curr. Drug Targets7(3),355–369 (2006).
    • 199  Lakka A, Mylonis I, Bonanou S, Simos G, Tsakalof A. Isolation of hypoxia-inducible factor 1 (HIF-1) inhibitors from frankincense using a molecularly imprinted polymer. Invest. New Drugs29(5),1081–1089 (2011).
    • 200  Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl Acad. Sci. USA106(42),17910–17915 (2009).
    • 201  Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2a PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA106(2),450–455 (2009).
    • 202  Kung AL, Zabludoff SD, France DS et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell6(1),33–43 (2004).
    • 203  Cook KM, Hilton ST, Mecinović J, Motherwell WB, Figg WD, Schofield CJ. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1α (HIF-1α) and p300 by a zinc ejection mechanism. J. Biol. Chem.284(39),26831–26838 (2009).
    • 204  Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS. Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate α-helix. J. Am. Chem. Soc.132(3),941–943 (2009).
    • 205  Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene22(14),2065–2072 (2003).
    • 206  Post DE, Devi NS, Li ZC et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin. Cancer Res.10(24),8603–8612 (2004).
    • 207  Post DE, Sandberg EM, Kyle MM et al. Targeted cancer gene therapy using a hypoxia inducible factor-dependent oncolytic adenovirus armed with interleukin-4. Cancer Res.67(14),6872–6881 (2007).
    • 208  Tan C, de Noronha RG, Roecker AJ et al. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res.65(2),605–612 (2005).
    • 209  Narita T, Yin S, Gelin CF et al. Identification of a Novel Small Molecule HIF-1 alpha Translation Inhibitor. Clin. Cancer Res.15(19),6128–6136 (2009).
    • 210  Tan C, de Noronha RG, Devi NS et al. Sulfonamides as a new scaffold for hypoxia inducible factor pathway inhibitors. Bioorg. Med. Chem. Lett.21(18),5528–5532 (2011).
    • 211  Mooring SR, Jin H, Devi NS et al. Design and synthesis of novel small-molecule inhibitors of the hypoxia inducible factor pathway. J. Med. Chem.54(24),8471–8489 (2011).
    • 212  Mun J, Jabbar AA, Devi NS, Liu Y, Van Meir EG, Goodman MM. Structure–activity relationship of 2,2-dimethyl-2H-chromene based arylsulfonamide analogs of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, a novel small molecule hypoxia inducible factor-1 (HIF-1) pathway inhibitor and anti-cancer agent. Bioorg. Med. Chem.20(14),4590–4597 (2012).
    • 213  Mun J, Jabbar AA, Devi NS et al. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents. J. Med. Chem.55(15),6738–6750 (2012).
    • 214  Shi Q, Yin S, Kaluz S et al. Binding model for the interaction of anticancer arylsulfonamides with the p300 transcription cofactor. ACS Med. Chem. Lett.3(8),620–625 (2012).
    • 215  Yin S, Kaluz S, Devi NS et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1 alpha interaction with cofactors p300/CBP. Clin. Cancer Res.18(24),6623–6633 (2012).
    • 216  Wang W, Ao L, Rayburn ER et al. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. PLoS ONE7(9),e44883 (2012).
    • 301  American Cancer Society. Cancer facts and figures 2011. www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011 (Accessed 11 April 2012)
    • 302  World Cancer Research Fund International. General world cancer statistics: GLOBOCAN 2008 database. www.wcrf.org/cancer_statistics/world_cancer_statistics.php (Accessed 1 April 2012)
    • 303  US FDA approves topotecan hydrochloride (hycamtin) in combination with cisplatin for the treatment of Stage IVB recurrent or persistent carcinoma of the cervix. www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm095638.htm (Accessed 30 April 2012)
    • 304  GlaxoSmith Kline receives approval for hycamtin (topotecan) capsules for the treatment of relapsed small cell lung cancer. www.drugs.com/newdrugs/gsk-receives-approval-hycamtin-topotecan-capsules-relapsed-small-cell-lung-cancer-671.html (Accessed 4 May 2012)
    • 305  National Cancer Institute. Romidepsin. www.cancer.gov/cancertopics/druginfo/romidepsin (Accessed 1 June 2011)
    • 306  US FDA approves new drug for advanced kidney cancer. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108924.htm (Accessed 4 May 2012)
    • 307  Genetic Engineering & Biotechnology News. Aeterna Zentaris regains North American rights to Akt inhibitor from Keryx. www.genengnews.com/gen-news-highlights/aeterna-zentaris-regains-north-american-rights-to-akt-inhibitor-from-keryx/81246731/ (Accessed 11 May 2012)
    • 308  Patent Database Search Results: ISD 1/1/2000->12/31/2012 AND HIF AND cancer AND inhibitor in US Patent Collection. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=0&f=S&l=50&d=PTXT&RS=%28%28%28ISD%2F20120101-%3E20121231+AND+HIF%29+AND+Cancer%29+AND+inhibitor%29&Refine=Refine+Search&Refine=Refine+Search&Query=ISD%2F1%2F1%2F2000-%3E12%2F31%2F2012+AND+HIF+AND+Cancer+AND+inhibitor (Accessed 26 February 2013)
    • 309  Web of Knowledge – All Database Results: Topic=(HIF AND CANCER AND INHIBITOR) Timespan=2000-2012. http://apps.webofknowledge.com/summary.do?SID=1F83DLk7akON2aaKN9E&product=UA&qid=18&search_mode=GeneralSearch (Accessed 26 February 2013)
    • 310  Search of: HIF and cancer – List Results – ClinicalTrials.gov. www.clinicaltrials.gov/ct2/results?term=hif+and+cancer+&Search=Search (Accessed 26 February 2013)