We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Challenges and opportunities in targeting the menin–MLL interaction

    Tomasz Cierpicki

    * Author for correspondence

    Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.

    &
    Jolanta Grembecka

    Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA

    Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.4155/fmc.13.214

    Menin is an essential co-factor of oncogenic MLL fusion proteins and the menin–MLL interaction is critical for development of acute leukemia in vivo. Targeting the menin–MLL interaction with small molecules represents an attractive strategy to develop new anticancer agents. Recent developments, including determination of menin crystal structure and development of potent small molecule and peptidomimetic inhibitors, demonstrate the feasibility of targeting the menin–MLL interaction. On the other hand, biochemical and structural studies revealed that MLL binds to menin in a complex bivalent mode engaging two MLL motifs, and therefore inhibition of this protein–protein interaction represents a challenge. This review summarizes the most recent achievements in targeting the menin–MLL interaction as well as discusses potential benefits of blocking menin in cancer.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Pui CH, Gaynon PS, Boyett JM et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet359(9321),1909–1915. (2002).
    • Liu H, Cheng EH, Hsieh JJ. MLL fusions: pathways to leukemia. Cancer Biol. Ther.8(13),1204–1211 (2009).
    • Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer.33(4),331–345 (2002).
    • Popovic R, Zeleznik-Le NJ. MLL: how complex does it get? J. Cell. Biochem.95(2),234–242 (2005).
    • Meyer C, Schneider B, Jakob S et al. The MLL recombinome of acute leukemias. Leukemia20(5),777–784 (2006).
    • Dou Y, Hess JL. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int. J. Hematol.87(1),10–18 (2008).
    • Zeisig BB, Milne T, Garcia-Cuellar MP et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol. Cell. Biol.24(2),617–628 (2004).
    • Milne TA, Martin ME, Brock HW, Slany RK, Hess JL. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer. Res.65(24),11367–11374 (2005).
    • Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl Acad. Sci. USA102(41),14765–14770 (2005).
    • 10  Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev.21(21),2762–2774 (2007).
    • 11  Owens BM, Hawley RG. HOX and non-HOX homeobox genes in leukemic hematopoiesis. Stem Cells.20(5),364–379. (2002).
    • 12  Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene.26(47),6766–6776. (2007).
    • 13  Rice KL, Licht JD. HOX deregulation in acute myeloid leukemia. J. Clin. Invest.117(4),865–868. (2007).
    • 14  Armstrong SA, Staunton JE, Silverman LB et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet.30(1),41–47 (2002).
    • 15  Ayton PM, Cleary ML: Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev.17(18),2298–2307 (2003).
    • 16  Slany RK. When epigenetics kills: MLL fusion proteins in leukemia. Hematol. Oncol.23(1),1–9 (2005).
    • 17  Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell123(2),207–218 (2005).▪▪ Described the discovery and validation of menin as a critical co-factor of MLL fusion proteins in leukemia and validated that interaction of MLL fusions with menin is required for development of leukemia in vivo in animal models.
    • 18  Chen YX, Yan J, Keeshan K et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc. Natl Acad. Sci. USA103(4),1018–1023 (2006).
    • 19  Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science276(5311),404–407 (1997).
    • 20  Guru SC, Goldsmith PK, Burns AL et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl Acad. Sci. USA95(4),1630–1634. (1998).
    • 21  Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, Hess JL. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res.67(15),7275–7283 (2007).▪ Studies demonstrating that short N-terminal fragment of MLL may function as a dominant negative inhibitor of the activity of MLL fusion proteins.
    • 22  Grembecka J, Belcher AM, Hartley T, Cierpicki T. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. J. Biol. Chem.285(52),40690–40698 (2010).▪ First characterization of the menin–MLL interaction using biochemical and biophysical methods and finding that there are two menin binding motifs within the N-terminus of MLL.
    • 23  Hughes CM, Rozenblatt-Rosen O, Milne TA et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell.13(4),587–597. (2004).
    • 24  Grembecka J, He S, Shi A et al. Menin–MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol.8(3),277–284 (2012).▪▪ Development of a first class of small molecule inhibitors of menin–MLL interaction and characterization of their activities in MLL leukemia cells.
    • 25  Shi A, Murai MJ, He S et al. Structural insights into inhibition of the bivalent menin–MLL interaction by small molecules in leukemia. Blood120(23),4461–4469 (2012).▪ Study reporting a first high resolution crystal structure of human menin with bound small molecule inhibitor targeting the MLL binding site.
    • 26  Yokoyama A, Wang Z, Wysocka J et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol.24(13),5639–5649. (2004).
    • 27  Cosgrove MS, Patel A. Mixed lineage leukemia: a structure-function perspective of the MLL1 protein. FEBS J.277(8),1832–1842 (2010).
    • 28  Slany RK. The molecular biology of mixed lineage leukemia. Haematologica94(7),984–993 (2009).
    • 29  Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem.81,65–95 (2012).
    • 30  Dou Y, Milne TA, Ruthenburg AJ et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol.13(8),713–719 (2006).
    • 31  Dou Y, Milne TA, Tackett AJ et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell121(6),873–885 (2005).
    • 32  Milne TA, Hughes CM, Lloyd R et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA102(3),749–754 (2005).
    • 33  Onodera A, Yamashita M, Endo Y et al. STAT6-mediated displacement of polycomb by trithorax complex establishes long-term maintenance of GATA3 expression in T helper type 2 cells. J. Exp. Med.207(11),2493–2506 (2010).
    • 34  Thiel AT, Blessington P, Zou T et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell17(2),148–159 (2010).
    • 35  Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell14(1),36–46 (2008).
    • 36  Van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M, Timmers HT. Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol. Cell. Biol.33(10),2067–2077 (2013).
    • 37  Huang J, Gurung B, Wan B et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature482(7386),542–546 (2012).▪ Reported the first crystal structure of human menin bound to MLL.
    • 38  Agarwal SK, Jothi R. Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors. PLoS ONE7(5),e37952 (2012).
    • 39  Scacheri PC, Davis S, Odom DT et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet.2(4),e51 (2006).
    • 40  Li BE, Gan T, Meyerson M, Rabbitts TH, Ernst P. Distinct pathways regulated by menin and by MLL1 in hematopoietic stem cells and developing B cells. Blood122(12),2039–2046 (2013).▪ Demonstrated that menin is not a requisite cofactor for MLL1 during normal hematopoiesis and drugs disrupting menin–MLL1 interaction should not impair hematopoiesis.
    • 41  Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat. Rev. Cancer.5(5),367–375. (2005).
    • 42  Trump D, Farren B, Wooding C et al. Clinical studies of multiple endocrine neoplasia type 1 (MEN1). QJM89(9),653–669 (1996).
    • 43  Pannett AA, Thakker RV. Multiple endocrine neoplasia type 1. Endocr. Relat. Cancer6(4),449–473 (1999).
    • 44  Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA68(4),820–823 (1971).
    • 45  Crabtree JS, Scacheri PC, Ward JM et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA98(3),1118–1123 (2001).
    • 46  Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol. Endocrinol.17(9),1880–1892 (2003).
    • 47  Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat.29(1),22–32 (2008).
    • 48  Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada T. Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol. Cell. Biol.24(15),6569–6580 (2004).
    • 49  Shimazu S, Nagamura Y, Yaguchi H, Ohkura N, Tsukada T. Correlation of mutant menin stability with clinical expression of multiple endocrine neoplasia type 1 and its incomplete forms. Cancer Sci.102(11),2097–2102 (2011).
    • 50  Murai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J. Biol. Chem.286(36),31742–31748 (2011).
    • 51  Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell96(1),143–152 (1999).
    • 52  Heppner C, Bilimoria KY, Agarwal SK et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene20(36),4917–4925. (2001).
    • 53  Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc. Natl Acad. Sci. USA98(7),3837–3842 (2001).
    • 54  Kim H, Lee JE, Cho EJ, Liu JO, Youn HD. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res.63(19),6135–6139 (2003).
    • 55  Dreijerink KM, Mulder KW, Winkler GS, Hoppener JW, Lips CJ, Timmers HT. Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res.66(9),4929–4935 (2006).
    • 56  Imachi H, Murao K, Dobashi H et al. Menin, a product of the MENI gene, binds to estrogen receptor to enhance its activity in breast cancer cells: possibility of a novel predictive factor for tamoxifen resistance. Breast Cancer Res. Treat.122(2),395–407 (2010).
    • 57  Schnepp RW, Hou Z, Wang H et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res.64(18),6791–6796 (2004).
    • 58  Jin S, Mao H, Schnepp RW et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res.63(14),4204–4210 (2003).
    • 59  Sukhodolets KE, Hickman AB, Agarwal SK et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol. Cell. Biol.23(2),493–509 (2003).
    • 60  Balogh K, Patocs A, Hunyady L, Racz K. Menin dynamics and functional insight: take your partners. Mol. Cell. Endocrinol.326(1–2),80–84 (2010).
    • 61  Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem. Sci.38(8),394–402 (2013).
    • 62  Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell. Endocrinol. doi:10.1016/j.mce.2013.08.002 (2013) (Epub ahead of print).
    • 63  Yang Y, Hua X. In search of tumor suppressing functions of menin. Mol. Cell Endocrinol.265–266, 34–41 (2007).
    • 64  Karges W, Maier S, Wissmann A, Dralle H, Dosch HM, Boehm BO. Primary structure, gene expression and chromosomal mapping of rodent homologs of the MEN1 tumor suppressor gene. Biochim. Biophys. Acta1446(3),286–294 (1999).
    • 65  Papaconstantinou M, Maslikowski BM, Pepper AN, Bedard PA. Menin: the protein behind the MEN1 syndrome. Adv. Exp. Med. Biol.668,27–36 (2009).
    • 66  Gray FL, Murai MJ, Grembecka J, Cierpicki T. Detection of disordered regions in globular proteins using (1)(3)C-detected NMR. Protein Sci.21(12),1954–1960 (2012).
    • 67  Macconaill LE, Hughes CM, Rozenblatt-Rosen O, Nannepaga S, Meyerson M. Phosphorylation of the menin tumor suppressor protein on serine 543 and serine 583. Mol. Cancer Res.4(10),793–801 (2006).
    • 68  Francis J, Lin W, Rozenblatt-Rosen O, Meyerson M. The menin tumor suppressor protein is phosphorylated in response to DNA damage. PLoS ONE6(1),e16119 (2011).
    • 69  Feng ZJ, Gurung B, Jin GH, Yang XL, Hua XX. SUMO modification of menin. Am. J. Cancer Res.3(1),96–106 (2013).
    • 70  Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res.34(Web Server issue),W116–W118 (2006).
    • 71  White AW, Westwell AD, Brahemi G. Protein–protein interactions as targets for small-molecule therapeutics in cancer. Expert Rev. Mol. Med.10,e8 (2008).
    • 72  Zhou H, Liu L, Huang J et al. Structure-based design of high-affinity macrocyclic peptidomimetics to block the menin-mixed lineage leukemia 1 (MLL1) protein–protein interaction. J. Med. Chem.56(3),1113–1123 (2013).
    • 73  Manka J, Daniels RN, Dawson E et al. Inhibitors of the menin-mixed lineage leukemia (MLL) interaction. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda, MD, USA (2013).
    • 74  Olsen JA, Banner DW, Seiler P et al. Fluorine interactions at the thrombin active site: protein backbone fragments H-C(alpha)-C=O comprise a favorable C-F environment and interactions of C-F with electrophiles. Chembiochem5(5),666–675 (2004).
    • 75  Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature378(6556),505–508 (1995).
    • 76  Guenther MG, Jenner RG, Chevalier B et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl Acad. Sci. USA102(24),8603–8608 (2005).
    • 77  Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA95(18),10632–10636 (1998).
    • 78  Mishra BP, Ansari KI, Mandal SS. Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle. FEBS J.276(6),1629–1640 (2009).
    • 79  Ansari KI, Hussain I, Das HK, Mandal SS. Overexpression of human histone methylase MLL1 upon exposure to a food contaminant mycotoxin, deoxynivalenol. FEBS J.276(12),3299–3307 (2009).
    • 80  Ansari KI, Kasiri S, Mandal SS. Histone methylase MLL1 has critical roles in tumor growth and angiogenesis and its knockdown suppresses tumor growth in vivo. Oncogene32(28),3359–3370 (2013).
    • 81  Takeda S, Liu H, Sasagawa S et al. HGF-MET signals via the MLL-ETS2 complex in hepatocellular carcinoma. J. Clin. Invest.123(7),3154–3165 (2013).
    • 82  Xu B, Li SH, Zheng R et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc. Natl Acad. Sci. USA110(43),17480–17485 (2013).▪ Study validating that menin promotes development of hepatocellular carcinoma and that drugs inhibiting the menin–MLL interaction might demonstrate activity in hepatocellular carcinoma.
    • 83  Gallo M, Ho J, Coutinho FJ et al. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res.73(1),417–427 (2013).
    • 84  Heddleston JM, Wu Q, Rivera M et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ.19(3),428–439 (2012).
    • 85  Milne TA, Kim J, Wang GG et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol. Cell.38(6),853–863 (2010).
    • 86  Huo H, Magro PG, Pietsch EC, Patel BB, Scotto KW. Histone methyltransferase MLL1 regulates MDR1 transcription and chemoresistance. Cancer. Res.70(21),8726–8735 (2010).
    • 87  Glaser S, Schaft J, Lubitz S et al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development133(8),1423–1432 (2006).
    • 88  Lubitz S, Glaser S, Schaft J, Stewart AF, Anastassiadis K. Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol. Biol. Cell.18(6),2356–2366 (2007).
    • 89  Bogershausen N, Bruford E, Wollnik B. Skirting the pitfalls: a clear-cut nomenclature for H3K4 methyltransferases. Clin. Genet.83(3),212–214 (2013).
    • 90  Huntsman DG, Chin SF, Muleris M et al. MLL2, the second human homolog of the Drosophila trithorax gene, maps to 19q13.1 and is amplified in solid tumor cell lines. Oncogene18(56),7975–7984 (1999).
    • 91  Natarajan TG, Kallakury BV, Sheehan CE et al. Epigenetic regulator MLL2 shows altered expression in cancer cell lines and tumors from human breast and colon. Cancer Cell Int.10,13 (2010).
    • 92  Ansari KI, Kasiri S, Mishra BP, Mandal SS. Mixed lineage leukaemia-4 regulates cell-cycle progression and cell viability and its depletion suppresses growth of xenografted tumour in vivo. Br. J. Cancer107(2),315–324 (2012).
    • 93  Imachi H, Yu X, Nishiuchi T, Miyai Y, Masugata H, Murao K. Raloxifene inhibits menin-dependent estrogen receptor activation in breast cancer cells. J. Endocrinol. Invest.34(11),813–815 (2011).
    • 94  Smith MC, Gestwicki JE. Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert. Rev. Mol. Med.14,e16 (2012).