We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/fmc.13.85

Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

References

  • Giansanti V, Scovassi AI. Apoptosis and cancer. In Multiple pathways in cancer development. Mondello C (Ed.). Transworld Research Network, Kerala, India, 135–147 (2008).
  • Call JA, Eckhardt S, Camidge DR. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol.9(10),1002–1011 (2008).
  • Mondello C, Scovassi AI. Apoptosis: a way to maintain healthy individuals. Subcell. Biochem.50,307–323 (2010).
  • Giansanti V, Tillhon M, Mazzini G et al. Killing of tumor cells: a drama in two acts. Biochem. Pharmacol.82(10),1304–1310 (2011).
  • Giansanti V, Torriglia A, Scovassi AI. Conversation between apoptosis and autophagy: ‘is it your turn or mine?’ Apoptosis16(4),321–333 (2011).
  • Scovassi AI. Defective apoptosis and efficient autophagy: two ways to protect cancer cells from death. Biochem. Pharmacol.1,e114 (2012).
  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol.12(9),823–830 (2010).
  • Todde V, Veenhuis M, van der Klei IJ. Autophagy: principles and significance in health and disease. Biochim. Biophys. Acta1792(1),3–13 (2009).
  • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol.8(11),931–937 (2007).▪▪ Describes the origin and progression of research in the field of autophagy.
  • 10  Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature451(7182),1069–1075 (2008).
  • 11  Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat. Cell Biol.12(9),814–822 (2010).
  • 12  Rubinsztein DC. Autophagy – alias self-eating – appetite and ageing. EMBO Rep.13(3),173–174 (2012).
  • 13  Vellai T, Tóth ML, Kovács AL. Janus-faced autophagy: a dual role of cellular self-eating in neurodegeneration? Autophagy3(5),461–463 (2007).
  • 14  Galluzzi L, Morselli E, Vicencio JM et al. Life, death and burial: multifaceted impact of autophagy. Biochem. Soc. Trans.36(Pt 5),786–790 (2008).
  • 15  Shen HM, Codogno P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy7(5),457–465 (2011).
  • 16  Mazure NM, Pouyssegur J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol.22(2),177–180 (2010).▪ Describes the impact of hypoxia on cancer cells and activation of autophagy.
  • 17  Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3 and BNIP3L. Cell Death Differ.15(10),1572–1581 (2008).
  • 18  Xu T, Su H, Ganapathy S, Yuan ZM. Modulation of autophagic activity by extracellular pH. Autophagy7(11),1316–1322 (2011).▪ Discusses the impact of pH changes on cancer cells and activation of autophagy.
  • 19  Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev.25(19),1999–2010 (2011).
  • 20  Roy S, Debnath J. Autophagy and tumorigenesis. Semin. Immunopathol.32(4),383–396 (2010).
  • 21  Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J. Pathol.226(2),255–273 (2012).
  • 22  Kang C, Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy4(1),82–84 (2008).
  • 23  Young AR, Narita M, Ferreira M et al. Autophagy mediates the mitotic senescence transition. Genes Dev.23(7),798–803 (2009).
  • 24  Kongara S, Karantza V. The interplay between autophagy and ROS in tumorigenesis. Front. Oncol.2,171 (2012).
  • 25  Overholtzer M, Brugge JS. The cell biology of cell-in-cell structures. Nat. Rev. Mol. Cell Biol.9(10),796–809 (2008).
  • 26  Matarrese P, Ciarlo L, Tinari A et al. Xeno-cannibalism as an exacerbation of self-cannibalism: a possible fruitful survival strategy for cancer cells. Curr. Pharm. Des.14(3),245–252 (2008).
  • 27  Matarrese P, Tinari A, Ascione B et al. Survival features of EBV-stabilized cells from centenarians: morpho-functional and transcriptomic analyses. Age34(6),1341–1359 (2012).
  • 28  Poels J, Spasić MR, Gistelinck M et al. Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress. Cell Death Differ.19(10),1590–1601 (2012).
  • 29  Sharma N, Dey P. Cell cannibalism and cancer. Diagn. Cytopathol.39(3),229–233 (2011).
  • 30  Krajcovic M, Overholtzer M. Mechanisms of ploidy increase in human cancers: a new role for cell cannibalism. Cancer Res.72(7),1596–1601 (2012).
  • 31  Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol.9(10),1102–1109 (2007).▪▪ Describes the molecular machinery of autophagy.
  • 32  Chen Y, Klionsky DJ. The regulation of autophagy – unanswered questions. J. Cell Sci.124(Pt 2),161–170 (2011).
  • 33  Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin. Immunopathol.32(4),397–413 (2010).
  • 34  Neufeld TP. TOR-dependent control of autophagy: biting the hand that feeds. Curr. Opin. Cell Biol.22(2),157–168 (2010).
  • 35  Funderburk SF, Wang QJ, Yue Z. The Beclin-1–VPS34 complex at the crossroads of autophagy and beyond. Trends Cell Biol.20(6),355–362 (2010).▪▪ Reports the implication of Beclin-1 in autophagy and other processes.
  • 36  Fimia GM, Di Bartolomeo S, Piacentini M, Cecconi F. Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy7(1),115–117 (2011).
  • 37  Weichhart T. Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol. Biol.821,1–14 (2012).
  • 38  He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet.43,67–93 (2009).
  • 39  Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol.13(9),1016–1023 (2011).
  • 40  Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature466(7302),68–76 (2010).
  • 41  Mathew R, Kongara S, Beaudoin B et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev.21(11),1367–1381 (2007).
  • 42  Zhao Z, Oh S, Li D et al. A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev. Cell22(5),1001–1016 (2012).
  • 43  Wu WK, Coffelt SB, Cho CH et al. The autophagic paradox in cancer therapy. Oncogene31(8),939–953 (2012).
  • 44  Wong AS, Cheung ZH, Ip NY. Molecular machinery of macroautophagy and its deregulation in diseases. Biochim. Biophys. Acta1812(11),1490–1497 (2011).
  • 45  Li Z, Chen B, Wu Y et al. Genetic and epigenetic silencing of the Beclin-1 gene in sporadic breast tumors. BMC Cancer10,98 (2010).
  • 46  Zhou S, Zhao L, Kuang M et al. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett.323(2),115–127 (2012).
  • 47  Kim MS, Jeong EG, Ahn CH et al. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum. Pathol.39(7),1059–1063 (2008).▪▪ Reports the mutations of UVRAG gene in cancer.
  • 48  Kang MR, Kim MS, Oh JE et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J. Pathol.217(5),702–706 (2009).▪▪ Reports the mutations of ATG genes in cancer.
  • 49  Yoshioka A, Miyata H, Doki Y et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int. J. Oncol.33(3),461–468 (2008).▪▪ Reports the mutations of LC3 in cancer.
  • 50  He JH, Luo RZ, Cai MY et al. Decreased expression of light chain 3 (LC3) increased the risk of distant metastasis in triple-negative breast cancer. Med. Oncol.30(1),468 (2013).
  • 51  Miracco C, Cevenini G, Franchi A et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum. Pathol.41(4),503–512 (2010).
  • 52  Sivridis E, Koukourakis MI, Mendrinos SE et al. Patterns of autophagy in urothelial cell carcinomas-the significance of ‘stone-like’ structures (SLS) in transurethral resection biopsies. Urol. Oncol. doi:10.1016/j.urolonc.2011.12.016 (2012) (Epub ahead of print).
  • 53  Takamura A, Komatsu M, Hara T et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev.25(8),795–800 (2011).
  • 54  Mathew R, Karp CM, Beaudoin B et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell137(6),1062–1075 (2009).
  • 55  Lau A, Wang XJ, Zhao F et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell Biol.30(13),3275–3285 (2010).
  • 56  Cheong H, Lu C, Lindsten T, Thompson CB. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol.30(7),671–678 (2012).
  • 57  Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments. Cancer Manag. Res.4,357–365 (2012).
  • 58  Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy4(5),600–606 (2008).▪ Describes the roles of Bcl-2 family members.
  • 59  Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J. Cell. Mol. Med.17(1),30–54 (2013).
  • 60  Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol.85(9),1219–1226 (2013).
  • 61  Takahashi Y, Meyerkord CL, Wang HG. Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ.16(7),947–955 (2009).
  • 62  Trocoli A, Djavaheri-Mergny M. The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am. J. Cancer Res.1(5),629–649 (2011).
  • 63  Chen S, Rehman SK, Zhang W et al. Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta1806(2),220–229 (2010).
  • 64  Leone RD, Amaravadi RK. Autophagy: a targetable linchpin of cancer cell metabolism. Trends Endocrinol. Metab.24(4),209–217 (2013).
  • 65  Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy6(3),322–329 (2010).
  • 66  Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol.8(9),528–539 (2011).
  • 67  Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the ‘survive or not survive’ dilemma. J. Cell. Physiol.228(1),1–8 (2013).
  • 68  Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene doi:10.1038/onc.2012.567 (2012) (Epub ahead of print).
  • 69  Sapienza PJ, Mauldin RV, Lee AL. Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate. J. Mol. Biol.405(2),378–394 (2011).
  • 70  Khokhar NZ, Altman JK, Platanias LC. Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies. Curr. Opin. Oncol.23(6),578–586 (2011).
  • 71  Fasolo A, Sessa C. Targeting mTOR pathways in human malignancies. Curr. Pharm. Des.18(19),2766–2777 (2012).▪▪ Reports the effect of mTOR inhibition in cancer.
  • 72  Pal SK, Quinn DI. Differentiating mTOR inhibitors in renal cell carcinoma. Cancer Treat. Rev. doi:10.1016/j.ctrv.2012.12.015 (2013) (Epub ahead of print).
  • 73  Crazzolara R, Cisterne A, Thien M et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in child-hood acute lymphoblastic leukemia. Blood113(14),3297–3306 (2009).
  • 74  Lin CI, Whang EE, Donner DB et al. Autophagy induction with RAD001 enhances chemosensitivity and radiosensitivity through Met inhibition in papillary thyroid cancer. Mol. Cancer Res.8(9),217–1226 (2010).
  • 75  Yu K, Shi C, Toral-Barza L et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res.70(2),621–631 (2010).
  • 76  Fan QW, Cheng C, Hackett C et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci. Signal3(147),ra81 (2010).
  • 77  Liu TJ, Koul D, LaFortune T et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol. Cancer. Ther.8(8),2204–2210 (2009).
  • 78  Sznol JA, Jilaveanu LB, Kluger HM. Studies of NVP-BEZ235 in Melanoma. Curr. Cancer Drug Targets13(2),165–174 (2013).
  • 79  Seitz C, Hugle M, Cristofanon S et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int. J. Cancer132(11),2682–2693 (2013).
  • 80  Corcelle EA, Puustinen P, Jäättelä M. Apoptosis and autophagy: Targeting autophagy signalling in cancer cells – ‘trick or treats’? FEBS J.276(21),6084–6096 (2009).
  • 81  Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy6(3),322–329 (2010).
  • 82  Turcotte S, Giaccia AJ. Targeting cancer cells through autophagy for anticancer therapy. Curr. Opin. Cell Biol.22(2),246–251 (2010).
  • 83  Don AS, Zheng XF. Recent clinical trials of mTOR-targeted cancer therapies. Rev. Recent Clin. Trials6(1),24–35 (2011).
  • 84  Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in cancer therapy. Cancer Lett.319(1),1–7 (2012).
  • 85  Zou Z, Yuan Z, Zhang Q et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy8(12),1798–1810 (2012).
  • 86  Amaravadi RK, Lippincott-Schwartz J, Yin XM et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer. Res.17(4),654–666 (2011).▪ Summarizes the strategies to manipulate autophagy.
  • 87  Bové J, Martínez-Vicente M, Vila M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci.12(8),437–452 (2011).
  • 88  Garelick MG, Kennedy BK. TOR on the brain. Exp. Gerontol.46(2–3),155–163 (2011).
  • 89  Mariño G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr. Opin. Cell Biol.23(2),198–206 (2011).
  • 90  Cortes CJ, Qin K, Cook J et al. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann–Sträussler–Scheinker disease. J. Neurosci.32(36),12396–12405 (2012).
  • 91  Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC. Autophagy and polyglutamine diseases. Prog. Neurobiol.97(2),67–82 (2012).
  • 92  Heo JM, Rutter J. Ubiquitin-dependent mitochondrial protein degradation. Int. J. Biochem. Cell Biol.43(10),1422–1426 (2011).
  • 93  Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol.12(1),9–14 (2011).
  • 94  Koh H, Chung J. PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity. Mol. Cell34(1),7–13 (2012).
  • 95  Kirkin V, McEwan DG, Novak I, Dikic I. A role for ubiquitin in selective autophagy. Mol. Cell34(3),259–269 (2009).
  • 96  Clague MJ, Urbé S. Ubiquitin: same molecule, different degradation pathways. Cell143(5),682–685 (2010).
  • 97  Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol.12(9),836–841 (2010).
  • 98  Driscoll JJ, Chowdhury RD. Molecular crosstalk between the proteasome, aggresomes and autophagy: translational potential and clinical implications. Cancer Lett.325(2),147–154 (2012).
  • 99  Ding WX, Ni HM, Gao W et al. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol. Cancer Ther.8(7),2036–2045 (2009).
  • 100  Chen D, Frezza M, Schmitt S et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets11(3),239–253 (2011).
  • 101  Liu C, Yan X, Wang HQ et al. Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer12,622 (2012).
  • 102  Zhang HY, Du ZX, Meng X et al. Beclin 1 enhances proteasome inhibition-mediated cytotoxicity of thyroid cancer cells in macroautophagy-independent manner. J. Clin. Endocrinol. Metab.98(2),E217–E226 (2013).
  • 103  Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov.6(4),273–286 (2007).
  • 104  Albini A, Tosetti F, Li VW et al. Cancer prevention by targeting angiogenesis. Nat. Rev. Clin. Oncol.9(9),498–509 (2012).
  • 105  Ramakrishnan S, Nguyen TM, Subramanian IV, Kelekar A. Autophagy and angiogenesis inhibition. Autophagy3(5),512–515 (2007).
  • 106  Delmas D, Solary E, Latruffe N. Resveratrol, a phytochemical inducer of multiple cell death pathways: apoptosis, autophagy and mitotic catastrophe. Curr. Med. Chem.18(8),1100–1121 (2011).
  • 107  Chen Y, Tseng SH. Pro- and anti-angiogenesis effects of resveratrol. In Vivo21(2),365–370 (2007).
  • 108  Zhang L, Jing H, Cui L et al. 3,4-dimethoxystilbene, a resveratrol derivative with anti-angiogenic effect, induces both macroautophagy and apoptosis in endothelial cells. J. Cell. Biochem.114(3),697–707 (2013).
  • 109  Nguyen TM, Subramanian IV, Kelekar A, Ramakrishnan S. Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood109(11),4793–4802 (2007).
  • 110  Hu YL, Jahangiri A, De Lay M, Aghi MK. Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy8(6),979–981 (2012).
  • 111  Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J. Clin. Oncol.30(32),4026–4034 (2012).
  • 112  Scherz-Shouval R, Weidberg H, Gonen C. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc. Natl Acad. Sci. USA107(43),18511–18516 (2010).
  • 113  Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol. Med.16(11),528–536 (2010).
  • 114  Ryan KM. p53 and autophagy in cancer: guardian of the genome meets guardian of the proteome. Eur. J. Cancer47(1),44–50 (2011).
  • 115  Sui X, Jin L, Huang X et al. p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy7(6),565–571 (2011).▪ Describes an innovative strategy based on p53 manipulation.
  • 116  Goehe RW, Bristol ML, Wilson EN, Gewirtz DA. Autophagy, senescence, and apoptosis. Methods Mol. Biol.962,31–48 (2013).
  • 117  Mayo LD. Directing p53 to induce autophagy. Cell Cycle11(18),3353–3354 (2012).
  • 118  Crighton D, Wilkinson S, O’Prey J et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell126(1),121–134 (2006).
  • 119  Tasdemir E, Maiuri MC, Galluzzi L et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol.10(6),676–687 (2008).
  • 120  Galluzzi L, Morselli E, Kepp O et al. Mitochondrial liaisons of p53. Antioxid. Redox Signal15(6),1691–1714 (2011).
  • 121  Fiorini C, Menegazzi M, Padroni C et al. Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis. Apoptosis18(3),337–346 (2013).
  • 122  Brooks CL, Gu W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell2(6),456–462 (2011).
  • 123  McConkey DJ, White M, Yan W. HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv. Cancer Res.116,131–163 (2012).
  • 124  Gammoh N, Marks PA, Jiang X. Curbing autophagy and histone deacetylases to kill cancer cells. Autophagy8(10),1521–1522 (2012).
  • 125  Newbold A, Vervoort SJ, Martin BP et al. Induction of autophagy does not alter the anti-tumor effects of HDAC inhibitors. Cell Death Dis.3,e387 (2012).
  • 126  Robert T, Vanoli F, Chiolo I et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature471(7336),74–79 (2011).
  • 127  Shubassi G, Robert T, Vanoli F et al. Acetylation: a novel link between double-strand break repair and autophagy. Cancer Res.72(6),1332–1335 (2012).
  • 128  Rodriguez OC, Choudhury S, Kolukula V et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle11(23),4436–4446 (2012).
  • 129  Zhao YG, Zhao H, Miao L et al. The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J. Biol. Chem.287(50),42053–42063 (2012).
  • 130  Amaravadi RK. Autophagy and tumor cell invasion. Cell Cycle11(20),3718–3719 (2012).
  • 131  Amaravadi RK, Yu D, Lum JJ et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest.117(2),326–336 (2007).
  • 132  Carew JS, Nawrocki ST, Kahue CN et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl–mediated drug resistance. Blood110(1),313–322 (2007).
  • 133  Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest.118(1),79–88 (2008).
  • 134  White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin. Cancer Res.15(17),5308–5316 (2009).
  • 135  Yang S, Wang X, Contino G et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev.A25(7),717–729 (2011).
  • 136  Sharma N, Thomas S, Golden EB et al. Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett.326(2),143–154 (2012).
  • 137  Bristol ML, Emery SM, Maycotte P et al. Autophagy inhibition for chemosensitization and radiosensitization in cancer: do the preclinical data support this therapeutic strategy? J. Pharmacol. Exp. Ther.344(3),544–552 (2013).
  • 138  Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
  • 139  Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Ann. Med.40(3),197–208 (2008).
  • 140  Gabriely G, Teplyuk NM, Krichevsky AM. Context effect: microRNA-10b in cancer cell proliferation, spread and death. Autophagy7(11),1384–1386 (2011).
  • 141  Cecconi F. Autophagy regulation by miRNAs: when cleaning goes out of service. EMBO J.30(22),4517–4519 (2011).▪▪ Describes the new idea that miRNAs regulate autophagy.
  • 142  Xu J, Wang Y, Tan X, Jing H. MicroRNAs as molecular switch between autophagy and apoptosis. RNA Biol.9(8),1031 (2012).
  • 143  Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis33(11),2018–2025 (2012).
  • 144  Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int. J. Biochem. Cell Biol.44(5),733–736 (2012).
  • 145  Zhai H, Fesler A, Ju J. MicroRNA: a third dimension in autophagy. Cell Cycle12(2),246–250 (2013).
  • 146  Qased AB, Yi H, Liang N et al. MiR-18a upregulates autophagy and ataxia telangiectasia mutated gene expression in HCT116 colon cancer cells. Mol. Med. Report7(2),559–564 (2013).
  • 147  Ucar A, Gupta SK, Fiedler J et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun.3,1078 (2012).
  • 148  Xu N, Zhang J, Shen C et al. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem. Biophys. Res. Commun.423(4),826–831 (2012).
  • 149  Zhu H, Wu H, Liu X et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy5(6),816–823 (2009).
  • 150  Frankel LB, Wen J, Lees M et al. microRNA-101 is a potent inhibitor of autophagy. EMBO J.30(22),4628–4641 (2011).
  • 151  Yu Y, Yang L, Zhao M et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia26(8),1752–1760 (2012).
  • 152  Korkmaz G, le Sage C, Tekirdag KA et al. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy8(2),165–176 (2012).
  • 153  Kovaleva V, Mora R, Park YJ et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells. Cancer Res.72(7),1763–1772 (2012).
  • 154  Chang Y, Yan W, He X et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology143(1),177–187 (2012).
  • 155  Gibbings D, Mostowy S, Jay F et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol.14(12),1314–1321 (2012).
  • 156  Derrien B, Baumberger N, Schepetilnikov M et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl Acad. Sci. USA109(39),15942–15946 (2012).
  • 157  Singh S, Narang AS, Mahato RI. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res.28(12),2996–3015 (2011).
  • 158  Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D et al. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J. Pharm. Sci.101(11),4046–4066 (2012).
  • 159  Denton D, Nicholson S, Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ.19(1),87–95 (2012).
  • 160  Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature469(7330),323–335 (2011).
  • 161  Aredia F, Guamán Ortiz LM, Giansanti V, Scovassi AI. Autophagy and cancer. Cells1,520–534 (2012).
  • 162  Amelio I, Melino G, Knight RA. Cell death pathology: cross-talk with autophagy and its clinical implications. Biochem. Biophys. Res. Commun.414(2),277–281 (2011).
  • 163  Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov.11(9),709–730 (2012).
  • 164  Townsend KN, Hughson LR, Schlie K et al. Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity. Immunol. Rev.249(1),176–194 (2012).
  • 165  Fimia GM, Piacentini M. Regulation of autophagy in mammals and its interplay with apoptosis. Cell. Mol. Life Sci.67(10),1581–1588 (2010).
  • 166  Bialik S, Zalckvar E, Ber Y et al. Systems biology analysis of programmed cell death Trends Biochem. Sci.35(10),556–564 (2010).
  • 167  Huett A, Goel G, Xavier RJ. A systems biology viewpoint on autophagy in health and disease. Curr. Opin. Gastroenterol.26(4),302–309 (2010).
  • 168  Young MM, Takahashi Y, Khan O et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J. Biol. Chem.287(15),12455–12468 (2012).
  • 169  Cho DH, Jo YK, Hwang JJ et al. Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett.274(1),95–100 (2009).
  • 170  Wirawan E, Vande Walle L, Kersse K et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis.1,e18 (2010).
  • 171  Yousefi S, Perozzo R, Schmid I et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol.8(10),1124–1132 (2006).
  • 172  Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol.11(10),700–714 (2010).
  • 173  Kreuzaler P, Watson CJ. Killing a cancer: what are the alternatives? Nat. Rev. Cancer12(6),411–424 (2012).
  • 174  Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene doi:10.1038/onc.2012.556 (2012) (Epub ahead of print).
  • 175  Jain MV, Paczulla AM, Klonisch T et al. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell Mol. Med.17(1),12–29 (2013).
  • 201  Clinical Trials. www.clinicaltrials.gov
  • 202  miRNA database. www.mir2disease.org