We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Sirtuin inhibitors as anticancer agents

    Jing Hu

    Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA

    ,
    Hui Jing

    Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA

    &
    Hening Lin

    Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14850, USA

    Published Online:https://doi.org/10.4155/fmc.14.44

    Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anticancer activity. Here, we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small-molecule inhibitors suggest that inhibiting sirtuins has anticancer effects. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents.

    References

    • 1 Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487), 2126–2128 (2000).
    • 2 Imai SI, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771), 795–800 (2000).
    • 3 Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5(1), 253–295 (2010).
    • 4 Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med. 56(0), 133–171 (2013).
    • 5 Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene doi:10.1038/onc.2013.120 (2013) (Epub ahead of print).
    • 6 Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer 4(3–4), 97–104 (2013).
    • 7 Song NY, Surh YJ. Janus-faced role of SIRT1 in tumorigenesis. Ann. NY Acad. Sci. 1271, 10–19 (2012).
    • 8 Firestein R, Blander G, Michan S et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3(4), e2020 (2008).
    • 9 Herranz D, Munoz-Martin M, Canamero M et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).
    • 10 Wang RH, Sengupta K, Li C et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4), 312–323 (2008).
    • 11 Yeung F, Hoberg JE, Ramsey CS et al. Modulation of NF-êB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).
    • 12 Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38(6), 864–878 (2010).
    • 13 Wang R-H, Zheng Y, Kim H-S et al. Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol. Cell 32(1), 11–20 (2008).
    • 14 Herranz D, Maraver A, Canamero M et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32(34), 4052–4056 (2013).
    • 15 Yuan H, Wang Z, Li L et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119(8), 1904–1914 (2012).
    • 16 Leko V, Park GJ, Lao U, Simon JA, Bedalov A. Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model. PLoS ONE 8(6), e66283 (2013).
    • 17 Chen L. Medicinal chemistry of sirtuin inhibitors. Curr. Med. Chem. 18(13), 1936–1946 (2011).
    • 18 Wang Z, Yuan H, Roth M, Stark JM, Bhatia R, Chen WY. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene 32(5), 589–598 (2013).
    • 19 Luo J, Nikolaev AY, Imai SI et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107(2), 137–148 (2001).
    • 20 Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24(5), 1021–1032 (2005).
    • 21 Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31(12), 1546–1557 (2012).
    • 22 Daitoku H, Hatta M, Matsuzaki H et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101(27), 10042–10047 (2004).
    • 23 Choi HK, Cho KB, Phuong NT et al. SIRT1-mediated FoxO1 deacetylation is essential for multidrug resistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells. Mol. Pharm. 10(7), 2517–2527 (2013).
    • 24 Menssen A, Hydbring P, Kapelle K et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl Acad. Sci. USA 109(4), E187–E196 (2012).
    • 25 Marshall GM, Liu PY, Gherardi S et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 7(6), e1002135 (2011).
    • 26 Yuan J, Minter-Dykhouse K, Lou Z. A c-Myc–SIRT1 feedback loop regulates cell growth and transformation. J. Cell Biol. 185(2), 203–211 (2009).
    • 27 Holloway KR, Calhoun TN, Saxena M et al. SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc. Natl Acad. Sci. USA 107(20), 9216–9221 (2010).
    • 28 Saxena M, Dykes SS, Malyarchuk S, Wang AE, Cardelli JA, Pruitt K. The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration. Oncogene doi:10.1038/onc.2013.549 (2013) (Epub ahead of print).
    • 29 Holloway KR, Barbieri A, Malyarchuk S et al. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol. 27(3), 480–490 (2013).
    • 30 O'Hagan HM, Wang W, Sen S et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20(5), 606–619 (2011).
    • 31 Bosch-Presegué L, Raurell-Vila H, Marazuela-Duque A et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42(2), 210–223 (2011).
    • 32 Murayama A, Ohmori K, Fujimura A et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133(4), 627–639 (2008).
    • 33 Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123(3), 437–448 (2005).
    • 34 Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704), 2105–2108 (2004).
    • 35 Gallardo E, Navarro A, Vinolas N et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30(11), 1903–1909 (2009).
    • 36 Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105(36), 13421–13426 (2008).
    • 37 Kim H-S, Vassilopoulos A, Wang R-H et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4), 487–499 (2011).
    • 38 Serrano L, Martinez-Redondo P, Marazuela-Duque A et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27(6), 639–653 (2013).
    • 39 Lin R, Tao R, Gao X et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51(4), 506–518 (2013).
    • 40 Heltweg B, Gatbonton T, Schuler AD et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66(8), 4368–4377 (2006).
    • 41 Li Y, Matsumori H, Nakayama Y et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells 16(1), 34–45 (2011).
    • 42 Liu G, Su L, Hao X et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J. Cell. Mol. Med. 16(7), 1618–1628 (2012).
    • 43 Liu PY, Xu N, Malyukova A et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20(3), 503–514 (2013).
    • 44 Sunami Y, Araki M, Hironaka Y et al. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells. PLoS ONE 8(2), e57633 (2013).
    • 45 Chen J, Chan AW, To KF et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3beta/beta-catenin signaling. Hepatology 57(6), 2287–2298 (2013).
    • 46 He X, Nie H, Hong Y, Sheng C, Xia W, Ying W. SIRT2 activity is required for the survival of C6 glioma cells. Biochem. Biophys. Res. Comm. 417(1), 468–472 (2012).
    • 47 McCarthy AR, Sachweh MC, Higgins M et al. Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner. Mol. Cancer. Ther. 12(4), 352–360 (2013).
    • 48 Zhang Y, Au Q, Zhang M, Barber JR, Ng SC, Zhang B. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem. Biophys. Res. Commun. 386(4), 729–733 (2009).
    • 49 Yang MH, Laurent G, Bause AS et al. HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol. Cancer Res. 11(9), 1072–1077 (2013).
    • 50 Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6(2), 105–114 (2007).
    • 51 Zhao Y, Yang J, Liao W et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12(7), 665–675 (2010).
    • 52 Ramakrishnan G, Davaakhuu G, Kaplun L et al. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J. Biol. Chem. 289(9), 6054–6066 (2014).
    • 53 Zhao D, Zou S-W, Liu Y et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 23(4), 464–476 (2013).
    • 54 Soung YH, Pruitt K, Chung J. Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Sci. Rep. 4, 3846 (2014).
    • 55 Kim HS, Patel K, Muldoon-Jacobs K et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1), 41–52 (2010).
    • 56 Finley LW, Carracedo A, Lee J et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19(3), 416–428 (2011).
    • 57 Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30(26), 2986–2996 (2011).
    • 58 Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 123(Pt 6), 894–902 (2010).
    • 59 Hafner AV, Dai J, Gomes AP et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY), 2(12), 914–923 (2010).
    • 60 Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119(9), 2758–2771 (2009).
    • 61 Jacobs KM, Pennington JD, Bisht KS et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 4(5), 291–299 (2008).
    • 62 Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med. 63, 222–234 (2013).
    • 63 Inuzuka H, Gao D, Finley LW et al. Acetylation-dependent regulation of Skp2 function. Cell 150(1), 179–193 (2012).
    • 64 Iwahara T, Bonasio R, Narendra V, Reinberg D. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32(24), 5022–5034 (2012).
    • 65 Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell Biol. 28(20), 6384–6401 (2008).
    • 66 Haigis MC, Mostoslavsky R, Haigis KM et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126(5), 941–954 (2006).
    • 67 Csibi A, Fendt SM, Li C et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4), 840–854 (2013).
    • 68 Jeong SM, Xiao C, Finley LW et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23(4), 450–463 (2013).
    • 69 Yu J, Sadhukhan S, Noriega LG et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 2806 (2013).
    • 70 Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3), 560–570 (2009).
    • 71 Du J, Zhou Y, Su X et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057), 806–809 (2011).
    • 72 Peng C, Lu Z, Xie Z et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10(12), M111.012658 (2011).
    • 73 Park J, Chen Y, Tishkoff DX et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50(6), 919–930 (2013).
    • 74 Michishita E, McCord RA, Berber E et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186), 492–496 (2008).
    • 75 Sebastian C, Zwaans BM, Silberman DM et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6), 1185–1199 (2012).
    • 76 Jiang H, Khan S, Wang Y et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443), 110–113 (2013).
    • 77 Gil R, Barth S, Kanfi Y, Cohen HY. SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Res. 41(18), 8537–8545 (2013).
    • 78 Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288(43), 31350–31356 (2013).
    • 79 Mostoslavsky R, Chua KF, Lombard DB et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2), 315–329 (2006).
    • 80 Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52(3), 303–313 (2013).
    • 81 Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16(10), 4623–4635 (2005).
    • 82 Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20(9), 1075–1080 (2006).
    • 83 Tsai YC, Greco TM, Cristea IM. SIRT7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics 13(1), 73–83 (2013).
    • 84 Barber MF, Michishita-Kioi E, Xi Y et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405), 114–118 (2012).
    • 85 Shin J, He M, Liu Y et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5(3), 654–665 (2013).
    • 86 Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154 (2014).
    • 87 Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem., 278(51), 50985–50998 (2003).
    • 88 Smith BC, Denu JM. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46(50), 14478–14486 (2007).
    • 89 Hawse WF, Hoff KG, Fatkins DG et al. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16(9), 1368–1377 (2008).
    • 90 Hu J, He B, Bhargava S, Lin H. A fluorogenic assay for screening Sirt6 modulators. Org. Biomol. Chem. 11(32), 5213–5216 (2013).
    • 91 Tervo AJ, Kyrylenko S, Niskanen P et al. An in silico approach to discovering novel inhibitors of human sirtuin type 2. J. Med. Chem. 47(25), 6292–6298 (2004).
    • 92 Audrito V, Vaisitti T, Rossi D et al. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 71(13), 4473–4483 (2011).
    • 93 Jung-Hynes B, Nihal M, Zhong W, Ahmad N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem. 284(6), 3823–3832 (2009).
    • 94 Suzuki T, Khan MN, Sawada H et al. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J. Med. Chem. 55(12), 5760–5773 (2012).
    • 95 Taylor DM, Balabadra U, Xiang Z et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem. Biol. 6(6), 540–546 (2011).
    • 96 Mai A, Valente S, Meade S et al. Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J. Med. Chem. 52(17), 5496–5504 (2009).
    • 97 Alvala M, Bhatnagar S, Ravi A et al. Novel acridinedione derivatives: design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies. Bioorg. Med. Chem. Lett. 22(9), 3256–3260 (2012).
    • 98 Alhazzazi TY, Kamarajan P, Joo N et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117(8), 1670–1678 (2011).
    • 99 Smith BC, Denu JM. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282(51), 37256–37265 (2007).
    • 100 Fatkins DG, Monnot AD, Zheng W. Nepsilon-thioacetyl-lysine: a multi-facet functional probe for enzymatic protein lysine Nepsilon-deacetylation. Bioorg. Med. Chem. Lett. 16(14), 3651–3656 (2006).
    • 101 Kiviranta PH, Suuronen T, Wallen EA et al. N(epsilon)-thioacetyl-lysine-containing tri-, tetra-, and pentapeptides as SIRT1 and SIRT2 inhibitors. J. Med. Chem. 52(7), 2153–2156 (2009).
    • 102 Jamonnak N, Fatkins DG, Wei L, Zheng W. N(epsilon)-methanesulfonyl-lysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine. Org. Biomol. Chem. 5(6), 892–896 (2007).
    • 103 Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M et al. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2. Bioorg. Med. Chem. 18(15), 5616–5625 (2010).
    • 104 Chakrabarty SP, Ramapanicker R, Mishra R, Chandrasekaran S, Balaram H. Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity. Bioorg. Med. Chem. 17(23), 8060–8072 (2009).
    • 105 Hirsch BM, Hao Y, Li X, Wesdemiotis C, Wang Z, Zheng W. A mechanism-based potent sirtuin inhibitor containing Nepsilon-thiocarbamoyl-lysine (TuAcK). Bioorg. Med. Chem. Lett. 21(16), 4753–4757 (2011).
    • 106 Jamonnak N, Hirsch BM, Pang Y, Zheng W. Substrate specificity of SIRT1-catalyzed lysine Nepsilon-deacetylation reaction probed with the side chain modified Nepsilon-acetyl-lysine analogs. Bioorg. Chem. 38(1), 17–25 (2010).
    • 107 Suzuki T, Asaba T, Imai E, Tsumoto H, Nakagawa H, Miyata N. Identification of a cell-active non-peptide sirtuin inhibitor containing N-thioacetyl lysine. Bioorg. Med. Chem. Lett. 19(19), 5670–5672 (2009).
    • 108 Huhtiniemi T, Salo HS, Suuronen T et al. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. J. Med. Chem. 54(19), 6456–6468 (2011).
    • 109 Mellini P, Kokkola T, Suuronen T et al. Screen of pseudopeptidic inhibitors of human sirtuins 1–3: two lead compounds with antiproliferative effects in cancer cells. J. Med. Chem. 56(17), 6681–6695 (2013).
    • 110 Morimoto J, Hayashi Y, Suga H. Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2. Angew. Chem. Int. Ed. Engl. 51(14), 3423–3427 (2012).
    • 111 Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276(42), 38837–38843 (2001).
    • 112 Ota H, Tokunaga E, Chang K et al. Sirt1 inhibitor, sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25(2), 176–185 (2006).
    • 113 Peck B, Chen CY, Ho KK et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 9(4), 844–855 (2010).
    • 114 Kojima K, Ohhashi R, Fujita Y et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem. Biophys. Res. Commun. 373(3), 423–428 (2008).
    • 115 Jin KL, Park JY, Noh EJ et al. The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells. J. Gynecol. Oncol. 21(4), 262–268 (2010).
    • 116 Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun. 401(1), 13–19 (2010).
    • 117 Lara E, Mai A, Calvanese V et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(6), 781–791 (2009).
    • 118 Rotili D, Tarantino D, Nebbioso A et al. Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J. Med. Chem. 55(24), 10937–10947 (2012).
    • 119 Pasco MY, Rotili D, Altucci L et al. Characterization of sirtuin inhibitors in nematodes expressing a muscular dystrophy protein reveals muscle cell and behavioral protection by specific sirtinol analogues. J. Med. Chem. 53(3), 1407–1411 (2010).
    • 120 Medda F, Russell RJ, Higgins M et al. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J. Med. Chem. 52(9), 2673–2682 (2009).
    • 121 Uciechowska U, Schemies J, Neugebauer RC et al. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem 3(12), 1965–1976 (2008).
    • 122 Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc. Natl Acad. Sci. USA 98(26), 15113–15118 (2001).
    • 123 Pagans S, Pedal A, North BJ et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3(2), e41 (2005).
    • 124 Neugebauer RC, Uchiechowska U, Meier R et al. Structure–activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J. Med. Chem. 51(5), 1203–1213 (2008).
    • 125 Rotili D, Tarantino D, Carafa V et al. Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells. J. Med. Chem. 55(18), 8193–8197 (2012).
    • 126 Rotili D, Tarantino D, Carafa V et al. Identification of tri- and tetracyclic pyrimidinediones as sirtuin inhibitors. ChemMedChem 5(5), 674–677 (2010).
    • 127 Napper AD, Hixon J, McDonagh T et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48(25), 8045–8054 (2005).
    • 128 Solomon JM, Pasupuleti R, Xu L et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26(1), 28–38 (2006).
    • 129 Stunkel W, Peh BK, Tan YC et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol. J. 2(11), 1360–1368 (2007).
    • 130 Zhang Q, Zeng SX, Zhang Y et al. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol. Med. 4(4), 298–312 (2012).
    • 131 Davis PD, Hill CH, Keech E et al. Potent selective inhibitors of protein kinase C. FEBS Lett. 259(1), 61–63 (1989).
    • 132 Trapp J, Jochum A, Meier R et al. Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition. J. Med. Chem. 49(25), 7307–7316 (2006).
    • 133 Huber K, Schemies J, Uciechowska U et al. Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins). J. Med. Chem. 53(3), 1383–1386 (2010).
    • 134 Suenkel B, Fischer F, Steegborn C. Inhibition of the human deacylase sirtuin 5 by the indole GW5074. Bioorg. Med. Chem. Lett. 23(1), 143–146 (2013).
    • 135 Cea M, Soncini D, Fruscione F et al. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS ONE 6(7), e22739 (2011).
    • 136 Schuetz A, Min J, Antoshenko T et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15(3), 377–389 (2007).
    • 137 Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2(10), 1419–1431 (2007).
    • 138 Lain S, Hollick JJ, Campbell J et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13(5), 454–463 (2008).
    • 139 McCarthy AR, Pirrie L, Hollick JJ et al. Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorg. Med. Chem. 20(5), 1779–1793 (2012).
    • 140 Outeiro TF, Kontopoulos E, Altmann SM et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317(5837), 516–519 (2007).
    • 141 Gey C, Kyrylenko S, Hennig L et al. Phloroglucinol derivatives guttiferone G, aristoforin, and hyperforin: inhibitors of human sirtuins SIRT1 and SIRT2. Angew. Chem. Int. Ed. Engl. 46(27), 5219–5222 (2007).
    • 142 Manjulatha K, Srinivas S, Mulakayala N et al. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: their evaluation as inhibitors of SIRT1. Bioorg. Med. Chem. Lett. 22(19), 6160–6165 (2012).
    • 143 Garske AL, Smith BC, Denu JM. Linking SIRT2 to Parkinson's disease. ACS Chem. Biol. 2(8), 529–532 (2007).
    • 144 Gutierrez M, Andrianasolo EH, Shin WK et al. Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula. J. Org. Chem. 74(15), 5267–5275 (2009).
    • 145 Friden-Saxin M, Seifert T, Landergren MR et al. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors. J. Med. Chem. 55(16), 7104–7113 (2012).
    • 146 Disch JS, Evindar G, Chiu CH et al. Discovery of Thieno[3,2-d]pyrimidine-6-carboxamides as Potent Inhibitors of SIRT1, SIRT2, and SIRT3. J. Med. Chem. 56(9), 3666–3679 (2013).
    • 147 Knight ZA, Shokat KM. Chemical genetics: where genetics and pharmacology meet. Cell 128(3), 425–430 (2007).
    • 148 Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotech. 25(1), 84–90 (2007).
    • 149 Wong S, McLaughlin J, Cheng D, Zhang C, Shokat KM, Witte ON. Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc. Natl Acad. Sci. USA 101(50), 17456–17461 (2004).
    • 150 Hopkins AL, Mason JS, Overington JP. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16(1), 127–136 (2006).