We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Medicinally important aromatic plants with radioprotective activity

    Ravindra M Samarth

    *Author for correspondence:

    E-mail Address: rmsamarth@gmail.com

    Department of Research, Bhopal Memorial Hospital & Research Centre, Department of Health Research, Government of India, Raisen Bypass Road, Bhopal 462038, India

    ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital Building, GMC Campus, Bhopal 462001, India

    ,
    Meenakshi Samarth

    Faculty of Science, RKDF University, Airport Bypass Road, Gandhi Nagar, Bhopal 462033, India

    &
    Yoshihisa Matsumoto

    Tokyo Institute of Technology, Institute of Innovative Research, Laboratory for Advanced Nuclear Energy, N1–30 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8550, Japan

    Published Online:https://doi.org/10.4155/fsoa-2017-0061

    Aromatic plants are often used as natural medicines because of their remedial and inherent pharmacological properties. Looking into natural resources, particularly products of plant origin, has become an exciting area of research in drug discovery and development. Aromatic plants are mainly exploited for essential oil extraction for applications in industries, for example, in cosmetics, flavoring and fragrance, spices, pesticides, repellents and herbal beverages. Although several medicinal plants have been studied to treat various conventional ailments only a handful studies are available on aromatic plants, especially for radioprotection. Many plant extracts have been reported to contain antioxidants that scavenge free radicals produced due to radiation exposure, thus imparting radioprotective efficacy. The present review focuses on a subset of medicinally important aromatic plants with radioprotective activity.

    Lay abstract

    Aromatic plants have been used as natural medicines since prehistoric times. They are currently mainly utilized for essential oil extraction and are widely used in cosmetics, flavoring and fragrance, spices, pesticides, repellent and herbal beverages. Several medicinal plants have shown promise for the treatment various diseases including cancer. However, only a handful studies are available on aromatic plants, especially in terms of radioprotection. The present review focuses on certain medicinally important aromatic plants with special reference to their radioprotective effects.

    References

    • 1 Slikkerveer LJ. The challange of non-experimental validation of MAC plants. In: Medicinal and Aromatic Plants: Agricultural, Commerical, Ecological, Legal, Pharmacological and Social Aspects. Bogers RJ, Craker LE, Lange D (Eds). Springer, Dordrecht, The Netherlands (2006).
    • 2 Brenes A, Roura E. Essential oils in poultry nutrition: main effects and modes of action. Animal Feed Sci. Tech. 158(1–2), 1–14 (2010).
    • 3 Greathead H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 62(2), 279–290 (2003).
    • 4 Gutteridge JMC, Halliwell B. Antioxidants: molecules, medicines and myths. Biochem. Biophys. Res. Comm. 393, 561–564 (2010).
    • 5 Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: fascinating or mythical biomolecules? Molecules 15, 6905–6930 (2010).
    • 6 Cuvelier ME, Richard H, Berset C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73, 645–652 (1996).
    • 7 Pedersen JA. Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. Biochem. System. Ecol. 28, 229–253 (2000).
    • 8 Lu Y, Foo LY. Salvianolic acid L, a potent phenolic antioxidant from Salviaofficinalis. Tetrahed. Lett. 42, 8223–8225 (2001).
    • 9 Ribeiro MA, Bernardo-Gil MG, Esquivel MM. Melissa officinalis, L.: study of antioxidant activity in supercritical residues. J. Supercrit. Fluids 21, 51–60 (2001).
    • 10 Pizzale L, Bortolomeazzi R, Vichi S, Uberegger E, Conte SC. Antioxidant activity of sage (Salvia officinalis and S. fruticosa) and oregano (Origanum onites and O. indercedens) extracts related to their phenolic compound content. J. Sci. Food Agric. 82, 1645–1651 (2002).
    • 11 Jayasinghe C, Gotoh N, Aoki T, Wada S. Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 51, 4442–4449 (2003).
    • 12 Matsuura H, Chiji H, Asakawa C, Amano M, Yoshihara T, Mizutani J. DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci. Biotech. Biochem. 67, 2311–2316 (2003).
    • 13 Dorman HJD, Kosar M, Kahlos K, Holm Y, Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agri. Food Chem. 51, 4563–4569 (2003).
    • 14 Sahin F, Gulluce M, Daferera D et al. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp.vulgare in the Eastern Anatolia region of Turkey. Food Cont. 15, 549–557 (2004).
    • 15 Kosar M, Dorman HJD, Baser KHC, Hiltunen R. Screening of free radical scavenging compounds in water extracts of Mentha samples using a postcolumn derivatization method. J. Agric. Food Chem. 52, 5004–5010 (2004).
    • 16 Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 91, 131–137 (2005).
    • 17 Gulcin I, Elmastat M, Aboul-Enein HY. Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother. Res. 21, 354–361 (2007).
    • 18 Ding HY, Chou TH, Liang CH. Antioxidant and antimelanogenic properties of rosmarinic acid methyl ester from Origanum vulgare. Food Chem. 123, 254–262 (2010).
    • 19 Samarth RM, Samarth M, Matsumoto Y. Utilization of cytogenetic biomarkers as tool for assessment of radiation injury and evaluation of radiomodulatory effects of various medicinal plants – a review. Drug Des. Devel. Ther. 9, 5355–5372 (2015).
    • 20 Thippeswamy NB, Akhilender Naidu K. Antioxidant potency of cumin varieties – cumin, black cumin and bitter cumin – on antioxidant systems. Eur. Food Res. Technol. 220, 472–476 (2005).
    • 21 Surveswaran S, Cai YZ, Corke H, Sun M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 102, 938–953 (2007).
    • 22 Allahghadri T, Rasooli I, Owlia P et al. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 75(2), H54–H61 (2010).
    • 23 Bettaieb I, Bourgou S, Wannes WA, Hamrouni I, Limam F, Marzouk B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 58, 10410–10418 (2010).
    • 24 Masuda T, Maekawa T, Hidaka K, Bando H, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J. Agric. Food Chem. 49, 2539–2547 (2001).
    • 25 Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N. Antioxidant properties of gingerol related compounds from ginger. Biofactors 21, 293–296 (2004).
    • 26 Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174(1), 27–37 (2008).
    • 27 El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 58, 8231–8237 (2010).
    • 28 Eleazu CO, Eleazu KC. Physico-chemical properties and antioxidative potentials of 6 new varieties of ginger (Zingiber officinale). Am. J. Food Tech. 7, 214–221 (2012).
    • 29 Yesil-Celiktas O, Girgin G, Orhan H, Wichers HJ, Bedir E, Vardar-Sukan F. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times. Eur. Food Res. Tech. 224, 443–451 (2007).
    • 30 Škrovánková S, Mišurcová L, Machů L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 67, 75–139 (2012).
    • 31 Sies H. Biochemistry of oxidant stress. Angew. Chem. Int. Ed. Engl. 25, 1058–1071 (1986).
    • 32 Jhun E, Jhun BH, Jones LR, Jung CY. Direct effects of ionizing radiation on integral membrane proteins. J. Biol. Chem. 266, 9403–9407 (1991).
    • 33 Breen AP, Murphy JA. Reactions of oxyl radicals with DNA. Free Radic. Biol. Med. 18, 1033–1077 (1995).
    • 34 Von Sonntag C. The chemistry of free-radical-mediated DNA damage. Basic Life Sci. 58, 287–317 (1991).
    • 35 Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin. Oncol. 26(5), 243–249 (2014).
    • 36 Imamichi S, Sharma MK, Kamdar RP, Fukuchi M, Matsumoto Y. Ionizing radiation induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 90(9), 365–372 (2014).
    • 37 Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. J. Radiat. Res. 57(2), 115–120 (2016).
    • 38 Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85 (1990).
    • 39 Arora R, Gupta D, Chawla R et al. Radioprotection by plant products: present status and future prospects. Phytother. Res. 19(1), 1–22 (2005).
    • 40 Pérez MB, Calderón NL, Croci CA. Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem. 104, 585–592 (2007).
    • 41 Paul P, Unnikkrishnan MK, Nagappa AN. Phytochemicals as radioprotective agents-A review. Indian J. Nat. Prod. Res. 2(2), 137–150 (2011).
    • 42 Matthäus B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food. Chem. 50(12), 3444–3452 (2002).
    • 43 Basch E, Foppa I, Liebowitz R et al. Lavender (Lavandula angustifolia Miller). J. Herb. Pharmacother. 4(2), 63–78 (2004).
    • 44 Soković M, Glamočlija J, Marin PD, Brkić D, van Griensven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 15(11), 7532–7546 (2010).
    • 45 Xavier S, Yamada K, Samuni AM et al. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim. Biophys. Acta 1573, 109–120 (2002).
    • 46 Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4), 360–371 (2010).
    • 47 Burkill HM. The Useful Plants of West Tropical Africa, Vol. 1. Royal Botanic Gardens, Kew, UK (1985).
    • 48 Vera R. Chemical composition of essential oil of Ageratum conyzoides L. (Asteraceae) from Reunion. Flav. Fragr. J. 8(5), 257–260 (1993).
    • 49 Hui WH, Lee WK. Triterpenoid and steroid constituents of some Lactuca and Ageratum species of Hong Kong. Phytochemistry 10, 899–901 (1971).
    • 50 Horng CJ, Lin SR, Chen AH. Phytochemical study on Ageratum conyzoides. Formosan Sci. 30, 101–105 (1976).
    • 51 Dubey S, Gupta KC, Matsumoto T. Sterols of Ageratum conyzoides L. Herba Hung 28, 71–73 (1989).
    • 52 Wiedenfeld H, Roder E. Pyrrolizidine alkaloids from Ageratum conyzoides. Planta Med. 57(6), 578–579 (1991).
    • 53 Wandji J, Bissangou MF, Ouambra JM, Silou T, Abena AA, Keita A. The essential oil from Ageratum conyzoides. Fitoterapia 67, 427–431 (1996).
    • 54 Sur N, Poi R, Bhattacharyya A, Adityachoudhury NJ. Isolation of aurantiamide acetate from Ageratum conyzoides. Ind. J. Chem. Soc. 74, 249–251 (1997).
    • 55 Yadava RN, Kumar S. A novel Isoflavone from the stems of Ageratum conyzoides. Fitoterapia 70, 475–477 (1999).
    • 56 Jagetia GC, Shirwaikar A, Rao SK, Bhilegaonkar PM. Evaluation of the radioprotective effect of Ageratum conyzoides Linn. extract in mice exposed to different doses of gamma radiation. J. Pharm. Pharmacol. 55, 1151–1158 (2003).
    • 57 Bnouham M, Ziyyat A, Mekhf H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity – a review of ten years of herbal medicine research (1990–2000). Int. J. Diabetes Metabol. 14, 1–25 (2006).
    • 58 Rajan M, Kumar KV, Kumar PS, Ramaniyam RT, Kumar NS. Antidiabetic activity of ethanolic extract on Albizia odoratissima (l.f) benth in alloxan induced diabetic rats. Int. J. Pharm. Sci. 2, 786–791 (2010).
    • 59 Hannan A, Humayun T, Hussain MB, Tahri A, Legssyer A. In vitro antibacterial activity of onion (Allium cepa) against clinical isolates of vibrio cholera. J. Ayub. Med. Coll. Abbottabad 22, 160–163 (2010).
    • 60 Ogunmodede OS, Sallu LC, Ogunlade B, Akunna GG, Oyewopo AO. An evaluation of the hypoglycemic, antioxidant and hepatoprotective potential of onion (Allium cepa L.) on alloxan-induced diabetic rabbits. Int. J. Pharmacol. 8, 21–29 (2012).
    • 61 Akash MS, Rehman K, Chen S. Spice plant Allium cepa: dietary supplement for treatment of Type 2 Diabetes mellitus. Nutrition 30(10), 1128–1137 (2014).
    • 62 Yuan L, Ji TF, Wang AG, Su YL. Studies on chemical constituents of the seeds of Allium cepa. Zhong Yao Cai 31(2), 222–223 (2008).
    • 63 Thakare VN, Kothavade PS, Dhote VV, Deshpande AD. Antifertility activity of ethanolic extract of Allium cepa Linn in rats. Int. J. Pharm. Tech. Res. 1, 73–78 (2009).
    • 64 Shenoy C, Patil MB, Kumar R, Patil S. Preliminary photochemical investigation and wound healing activity of Allium cepa Linn (liliaceae). Int. J. Pharm. Pharm. Sci. 2, 167–175 (2009).
    • 65 Kheyrodin H. Isolation and identification of new eleven constituents from medicinal plant. Int. J. Nutr. Metab. 1, 14–19 (2009).
    • 66 Mathur ML, Gaura J, Sharma R, Haldiya KR. Anti-diabetic properties of a spice plant Nigella sativa. J. Endocrinol. Metab. 1, 1–8 (2011).
    • 67 Nwachukwu KC, Asagba S, Nwose C, Okoh MP. Protection and anti-oxidative effects of garlic, onion and ginger extracts, X-ray exposed albino rats as model for biochemical studies. Afr. J. Biochem. Res. 8(9), 166–173 (2014).
    • 68 Fritsch RM, Friesen N. Evolution, domestication and taxonomy. In: Allium Crop Science: Recent Advances. Rabinowitch D, Currah L (Eds). CAB International, Oxfordshire, UK, 5–30 (2002).
    • 69 Friesen N, Fritsch RM, Blattner FR. Phylogeny and new intrageneric classification of Allium L. (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22, 372–395 (2006).
    • 70 Stavělíková H. Morphological characteristics of garlic (Allium sativum L.) genetic resources collection – information. Hort. Sci. (Prague) 35(3), 130–135 (2008).
    • 71 Fenwick GR, Hanley AB. The genus Allium. Part 2. Crit. Rev. Food Sci. Nutr. 22(4), 273–377 (1985).
    • 72 Kaku H, Goldstein IJ, Van Damme EJM, Peumans W. New mannosespecific lectins from garlic (Allium sativum) and ramsons (Allium sativum) bulbs. Carbohydrate Res. 229, 347–353 (1992).
    • 73 Agarwal KC. Therapeutic actions of garlic constituents. Med. Res. Rev. 16, 111–124 (1996).
    • 74 Wang EJ, Li Y, Lin M, Chen L, Stein AP, Reuhl KR, Yang CS. Protective effects of garlic and related organosulfur compounds on acetaminophen-induced hepatotoxicity in mice. Toxicol. Appl. Pharmacol. 136, 146–154 (1996).
    • 75 Harborne JB, Williams CA. Notes on flavonoid survey. In: A review of Allium. Section Allium. Mathew B (Ed.). Royal Botanic Garden, Kew, UK (1996).
    • 76 Fossen T, Andersen OM. Malonated anthocyanins of garlic Allium sativum L. Food Chem. 58(3), 215–217 (1997).
    • 77 Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim. Biophysic. Acta 1379, 233–244 (1998).
    • 78 Matsuura H, Ushiroguchi T, Itakura Y, Hayashi H, Fuwa T. A furostanol glycoside from garlic bulbs of Allium sativum L. Chem. Pharm. Bull. 36, 3659–3663 (1988).
    • 79 Cho BHS, Xu S. Effects of allyl mercaptan and various allium-derived compounds on cholesterol synthesis and secretion in Hep-G2 cells. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 126(2), 195–201 (2000).
    • 80 Banerjee SK, Mukherjee PK, Maulik SK. Garlic as an antioxidant: the good, the bad and the ugly. Phytother. Res. 17, 97–106 (2003).
    • 81 Calvo-Gomez O, Morales-Lopez J, Lopez MG. Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation. J. Chromatogr. A 1036(1), 91–93 (2004).
    • 82 Singh SP, Abraham SK, Kesavan PC. In vivo radioprotection with garlic extract. Mutat. Res. 345(3–4), 147–153 (1995).
    • 83 Das T, Choudhury AR, Sharma A, Talukder G. Effects of crude garlic extract on mouse chromosomes in vivo. Food Chem. Toxicol. 34(1), 43–47 (1996).
    • 84 Elosta A, Slevin M, Rahman K, Ahmed N. Aged garlic has more potent antiglycation and antioxidant properties compared with fresh garlic extract in vitro. Sci. Rep. 7, 39613 (2017).
    • 85 Greenleaf WH. Pepper breeding. In: Breeding Vegetable Crops. Basset MJ (Ed.). The AVI Publishing Company, CT, USA (1986).
    • 86 Grubben GJH, El-Tahir IM. Capsicum annuum L. In: PROTA 2: Vegetables/Légumes. Grubben GJH, Denton OA (Eds). PROTA Foundation, Wageningen, the Netherlands (2004).
    • 87 Pabón-Mora N, Litt A. Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. Am. J. Bot. 98(9), 1415–1436 (2011).
    • 88 Dagnoko S, Yaro-Diarisso N, Sanogo PN et al. Overview of pepper (Capsicum spp.) breeding in West Africa. Afr. J. Agric. Res. 8(13), 1108–1114 (2013).
    • 89 Bosland PW, Votava EJ. Peppers: Vegetable and Spice Capsicums. CAB International, Wallingford, UK (2000).
    • 90 Schweiggert U, Kammerer RD, Carle R, Schieber A. Characterization of carotenoids and carotenoid esters in red pepper pods (Capsicum annuum L.) by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19(18), 2617–2628 (2005).
    • 91 Materska M, Konopacka M, Rogoliński J, Ślosarek K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 168, 546–553 (2015).
    • 92 Bown D. Encyclopaedia of Herbs and Their Uses. Dorling Kindersley, London, UK (1995).
    • 93 Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants. Council for Scientific and Industrial Research, New Delhi, India (1956).
    • 94 Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants, Vol. 1. Central Drug Research Institute, Lucknow, India (1990).
    • 95 Chopra RN, Chopra IC, Varma BS. Supplement to Glossary of Indian Medicinal Plants. Council for Scientific and Industrial Research, New Delhi, India (1992).
    • 96 Schaneberg BT, Mikell JR, Bedir E, Khan IA. An improved HPLC method for quantitative determination of six triterpenes in Centella asiatica extracts and commercial products. Pharmazie 58(6), 381–384 (2003).
    • 97 Aziz ZA, Davey MR, Power JB, Anthony P, Smith RM, Lowe KC. Production of asiaticoside and madecassoside in Centella asiatica in vitro and in vivo. Biologia Plantarum 51(1), 34–42 (2007).
    • 98 Sharma J, Sharma R. Radioprotection of Swiss albino mouse by Centella asiatica extract. Phytother. Res. 16(8), 785–786 (2002).
    • 99 Joy J, Nair CK. Protection of DNA and membranes from gamma-radiation induced damages by Centella asiatica. J. Pharm. Pharmacol. 61(7), 941–947 (2009).
    • 100 do Vale TG, Furtado EC, Santos JG Jr, Viana GS. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) n.e. Brown. Phytomedicine 9(8), 709–714 (2002).
    • 101 de Almeida AA, Costa JP, de Carvalho RB, de Sousa DP, de Freitas RM. Evaluation of acute toxicity of a natural compound(+)-limonene epoxide and its anxiolytic-like action. Brain Res. 1148, 56–62 (2012).
    • 102 Miyake Y, Yamamoto K, Tsujihara N, Osawa T. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 33, 689–695 (1975).
    • 103 Bethrow MA. Flavonoid accumulation in tissue and cell culture. In: Flavonoids In The Living System. Maanthey J, Buslig BS (Eds). Plennum Press, NY, USA (1998).
    • 104 Hosseinimehr SJ, Tavakoli H, Pourheidari G, Sobhani A, Shafiee A. Radioprotective effects of citrus extract against gamma-irradiation in mouse bone marrow cells. J. Radiat. Res. 44(3), 237–241 (2003).
    • 105 Bos R, Hendriks H, van Os FH. The composition of the essential oil in the leaves of Coleus aromaticus Bentham and their importance as a component of the species antiaphthosae Ph. Ned. Ed. V. Pharm. Weekbl. Sci. 5, 129–130 (1983).
    • 106 Hussain A, Popli OP, Misra LN et al. Directory of Indian Medicinal Plants. Central Institute of Medicinal and Aromatic Plants, Lucknow, India (1992).
    • 107 Rao BSS, Shanbhoge R, Upadhya D et al. Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells(V79) exposed to gamma radiation. Mutagenesis 21(4), 237–242 (2006).
    • 108 Gupta K, Thakral KK, Arora SK, Wagle DS. Studies on growth, structural carbohydrates and phytate in coriander (Coriander sativum) during seed development. J. Sci. Food Agric. 54, 43–46 (1986).
    • 109 Grieve M. A Modern Herbal, Vol. 1. Leyel H (Ed.). Dover Publications, NY, USA (1971).
    • 110 Bajpai M, Mishra A, Prakash D. Antioxidant and free radical scavenging activities of some leafy vegetables. Int. J. Food Sci. Nutr. 56, 73–81 (2005).
    • 111 Melo EA, Bion FM, Filho JM, Guerra NB. In vivo antioxidant effect of aqueous and etheric coriander (Coriandrum sativum L.) extracts. Eur. J. Lipid. Sci. Technol. 105, 483–487 (2003).
    • 112 Farag MFS. Evaluation of radioprotective effects of coriander (Coriandrum sativum L.) in male rats. Arab J. Nucl. Sci. Appl. 46(1), 240–249 (2013).
    • 113 Hwang E, Lee DG, Park SH, Oh MS, Kim SY. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. J. Med. Food. 17(9), 985–995 (2014).
    • 114 Zarghami NS, Heinz DE. Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry 10(11), 2755–2761 (1971).
    • 115 Pfander H, Rychener M. Separation of crocetin glycosyl esters by high-perfbrmance liquid chromatography. J. Chromatogr. 234, 443–447 (1982).
    • 116 Himeno H, Sano K. Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric. Biol. Chem. 51, 2395–2400 (1987).
    • 117 Rodel W, Petrzika M. Analysis of the volatile components of saffron. J. High Resolut. Chromatogr. 14, 771–774 (1991).
    • 118 Tarantilis PA, Polissiou M, Manfait M. Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. J. Chromatogr. A 664(1), 55–61 (1994).
    • 119 Zargari A. Medicinal Plant. Tehran University Press, Tehran, Iran (1990).
    • 120 Shrivastava R, Ahmed H, Dixit RK, Dharamveer, Saraf SA. Crocus sativus L.: a comprehensive review. Pharmacogn. Rev. 4(8), 200–208 (2010).
    • 121 Koul A, Abraham SK. Intake of saffron reduces γ-radiation-induced genotoxicity and oxidative stress in mice. Toxicol. Mech. Methods 15, 1–24 (2017).
    • 122 Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 57(1), 1–7 (1991).
    • 123 Kelkar NC, Rao BS. Studies in Indian essential oils: essential oils from C. longa. J. Ind. Inst. Sci. 17A, 7–15 (1933).
    • 124 Srinivasan KB. A chromatographic study of the curcuminoids in Curcuma longa, L. J. Pharm. Pharmacol. 5(7), 448–457 (1953).
    • 125 Mehra PN, Puri HS. Study of different samples of Haridra (Curcuma longa L.). Ind. J. Pharm. 33, 132 (1971).
    • 126 Shafaghati N, Hedayati M, Hosseinimehr SJ. Protective effects of curcumin against genotoxicity induced by 131-iodine in human cultured lymphocyte cells. Phcog. Mag. 10, 106–110 (2014).
    • 127 Nada AS, Hawas AM, Amin Nel-D, Elnashar MM, Abd Elmageed ZY. Radioprotective effect of Curcuma longa extract on γ-irradiation-induced oxidative stress in rats. Can. J. Physiol. Pharmacol. 90(4), 415–423 (2012).
    • 128 Kumar S, Dwivedi S, Kukreja AK, Sharma JR, Bagchi GD. Cymbopogon: The Aromatic Grass Monograph. Central Institute of Medicinal and Aromatic Plants, Lucknow, India (2000).
    • 129 Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2(1), 3–8 (2011).
    • 130 Abegaz B, Yohanne PG, Diete KR. Constituents of the essential oil of Ethiopian Cymbopogon citratus stapf. J. Nat. Prod. 146, 423–426 (1983).
    • 131 Sarer E, Scheffer JJ, Baerheim SA. Composition of the essential oil of Cymbopogon citratus (DC.) Stapf cultivated in Turkey. Sci. Pharm. 51, 58–63 (1983).
    • 132 Trease GE. A Textbook of Pharmacognosy (9th Edition). W.B Saunders, London, UK (1996).
    • 133 Ming L, Figueiredo R, Machado S, Andrade R. Yield of essential oil of and citral content in different parts of lemon grass leaves (Cymbopogon citratus (DC.) Stapf.) Poaceae. In: Proceedings of the International Symposium on Medicinal and Aromatic Plants. Acta Hort. Craker LE, Nolan L, Shetty K (Eds). MA, USA (1996).
    • 134 Rauber S, Guterres SS, Schapoval EE. LC determination of citral in Cymbopogon citratus volatile oil. J. Pharm. Biomed. Anal. 37, 597–601 (2005).
    • 135 Figueirinha A, Paranhos A, Perez-Alonso JJ, Santos-Buelga C, Batista MT. Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 110, 718–728 (2008).
    • 136 Kanatt SR, Chawla SP, Sharma A. Antioxidant and radio-protective activities of lemon grass and star anise extracts. Food Biosci. 6, 24–30 (2014).
    • 137 Jamal A, Javed K, Aslam M, Jafri MA. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J. Ethnopharmacol. 103(2), 149–153 (2006).
    • 138 Dhuley JN. Anti-oxidant effects of cinnamon (Cinnamomum verum) bark and greater cardamom(Amomum subulatum) seeds in rats fed high fat diet. Ind. J. Exp. Biol. 37(3), 238–342 (1999).
    • 139 Lawrence BM. Major tropical spices – cardamom (Elettaria cardamomum). In: Hagers Handbuch der pharmazeutischen Praxis. von Bruchhausen F (Ed.). Allured Publishers, IL, USA (1978).
    • 140 Korikanthimath VS, Mulge R, Zachariah TJ. Variations in essential oil constituents in high yielding selections of cardamom. J. Plant. Crops 27, 230–232 (1999).
    • 141 Darwish MM, Abd El Azime AS. Role of cardamom (Elettaria cardamomum) in ameliorating radiation induced oxidative stress in rats. Arab J. Nucl. Sci. Appl. 46(1), 232–239 (2013).
    • 142 Yang CH, Chang FR, Chang HW, Wang SM, Hsieh MC, Chuang LY. Investigation of the antioxidant activity of Illicium verum extracts. J. Med. Plants Res. 6, 314–324 (2012).
    • 143 Shellie R, Mondello L, Marriott P, Dugo G. Characterisation of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. A 970, 225–234 (2002).
    • 144 Lu H, Li H, Li XL, Zhou AG. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis related bacteria. Afr. J. Microbiol. Res. 4(4), 309–313 (2010).
    • 145 Karamalakova Y, Sharma J, Nikolova G et al. Studies on antioxidant properties before and after UV- and γ-irradiation of Bulgarian lavender essential oil isolated from Lavandula angostifolia Mill. Biotechnol. Biotechnol. Equip. 27(3), 3861–3865 (2013).
    • 146 Shah KA, Patel MB, Patel RJ, Parmar PK. Mangifera indica (Mango). Pharmacogn. Rev. 4(7), 42–48 (2010).
    • 147 Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmcol. 71, 23–43 (2000).
    • 148 Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK. Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 176, 165–173 (2002).
    • 149 Rodeiro I, Delgado R, Garrido G. Effects of a Mangifera indica L. stem bark extract and mangiferin on radiation-induced DNA damage in human lymphocytes and lymphoblastoid cells. Cell Prolif. 47(1), 48–55 (2014).
    • 150 Anonymous. The Wealth of India: Raw Materials VI. Publications and Information Directorate, C.S.I.R, New Delhi, India (1962).
    • 151 Triantaphyllou K, Blekas G, Boskou D. Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr. 52, 313–317 (2001).
    • 152 Elmastas M, Dermirtas I, Isildak O, Aboul-Enein H. Antioxidant activity of S-carvone isolated from spearmint (Mentha spicata L. Fam Lamiaceae). J. Liquid Chromatogr. Relat. Technol. 29, 1465–1475 (2006).
    • 153 Samarth RM, Goyal PK, Kumar A. Modulation of serum phosphatases activity in Swiss albino mice against gamma irradiation by Mentha piperita (Linn.). Phytother. Res. 16, 586–589 (2002).
    • 154 Samarth RM, Goyal PK, Kumar A. Protection of Swiss albino mice against whole-body gamma irradiation by Mentha piperita (Linn.). Phytother. Res. 18, 546–550 (2004).
    • 155 Samarth RM, Kumar A. Mentha piperita (Linn) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol. 41, 229–237 (2003).
    • 156 Samarth RM, Saini MR, Maharwal J, Dhaka A, Kumar A. Mentha piperita (Linn.) leaf extract provides protection against radiation induced alterations in the intestinal mucosa of Swiss albino mice. Indian J. Exp. Biol. 40, 1245–1249 (2002).
    • 157 Samarth RM. Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by Mentha piperita (Linn). J. Radiat. Res. 48, 523–528 (2007).
    • 158 Samarth RM, Samarth M. Protection against radiation induced testicular damage in Swiss albino mice by Mentha piperita (Linn). Basic Clin. Pharmacol. Toxicol. 104, 329–334 (2009).
    • 159 Satyavati GV, Gupta AK, Tandon N. Medicinal plants of India. Indian Council of Medicinal Research. Cambridge Printing Works, Cambridge, UK (1987).
    • 160 Kureel SP, Kapil RS, Popli SP. Terpenoid alkaloids from Murraya koenigii Spreng.-II. The constitution of cyclomahanimbine, bicyclomahanimbine & mahanimbidine. Tetrahedron Lett. 44, 3857–3862 (1969).
    • 161 Narasimhan NS, Paradkar MV, Chitguppi VP, Kelkar SL. Alkaloids of Murraya koenigii: structures of mahanimbine, koenimbine, - mahanine, koenine, koenigine, koenidine & + isomahanimbine. Ind. J. Chem. 13, 993–999 (1975).
    • 162 Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Hand book of Medicinal Plants, (1st Edition). Agrobios, Jodhpur, India (2003).
    • 163 Iyer D, Uma Devi P. Radioprotective activity of Murraya koenigii (L.) on cellular antioxidants in Swiss albino mice. J. Pharm. Res. 2(3), 495–501 (2009).
    • 164 Kumaravelu P, Subramanyam S, Dakshinmurthy DP, Devraj NS. The antioxidant effect of eugenol on carbon tetrachloride induced erythrocyte damage in rats. J. Nutr. Biochem. 7, 23–28 (1996).
    • 165 Srivastava S, Gupta MM, Prajapati V, Tripathi AK, Kumar S. Insecticidal activity of Myristicin from Piper mullesua. Pharm. Biol. 39, 226–229 (2001).
    • 166 Eklund PC, Langvik OK, Warna JP, Salmi TO, Willfor SM, Sjoholm RE. Chemical studies on antioxidant mechanism and free radical scavenging properties of Lignans. Org. Biomol. Chem. 3, 3336–3347 (2005).
    • 167 Sharma M, Kumar M. Radioprotection of Swiss albino mice by Myristica fragrance houtt. J. Radiat. Res. 48(2), 135–141 (2007).
    • 168 Khare CP. Encyclopedia of Indian Medicinal Plants. Springes-Verlag Berlin Heidelberg, NY, USA (2004).
    • 169 Goreja WG. Black Seed: Nature's Miracle Remedy. Amazing Herbs Press, NY, USA (2003).
    • 170 Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal Plants Used in Ayurveda. New Delhi, India (2005).
    • 171 Ahmad A, Husain A, Mujeeb M et al. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac. J. Trop. Biomed. 3(5), 337–352 (2013).
    • 172 Rastogi L, Feroz S, Pandey BN, Jagtap A, Mishra KP. Protection against radiation-induced oxidative damage by an ethanolic extract of Nigella sativa L. Int. J. Radiat. Biol. 86(9), 719–731 (2010).
    • 173 Assayed ME. Radioprotective effects of black seed (Nigella sativa) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. Immunopharmacol. Immunotoxicol. 32(2), 284–296 (2010).
    • 174 Sharafeldin KM. The physiological impact of ginger, Zingiber officinale and black seed oil, Nigella sativa L. as medicinal plants in gamma irradiated rats. Egypt. J. Exp. Biol. (Zool.) 11(2), 185–192 (2015).
    • 175 Cohen MM. Tulsi-Ocimum sanctum: a herb for all reasons. J. Ayurveda Integr. Med. 5(4), 251–259 (2014).
    • 176 Bast F, Rani P, Meena D. Chloroplast DNA phylogeography of holy basil (Ocimum tenuiflorum) in Indian subcontinent. Sci. World J. 2014, 847–482 (2014).
    • 177 Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 7, 7–13 (2000).
    • 178 Jaggi RK, Madaan R, Singh B. Anticonvulsant potential of holy basil, Ocimum sanctum Linn and its cultures. Ind. J. Exp. Biol. 41, 1329–1333 (2003).
    • 179 Pattanayak P, Debajyoti D, Sangram KP. Ocimum sanctum Linn. A reservoir plant for therapeutic applications. Pharmacogn. Rev. 4, 95–105 (2010).
    • 180 Ganasoundari A, Uma Devi P, Rao MN. Protection against radiation-induced chromosome damage in mouse bone marrow by Ocimum sanctum. Mutat. Res. 373(2), 271–276 (1997).
    • 181 Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the ocimum flavonoids orientin and vicenin: mechanisms of action. Radiat. Res. 154(4), 455–460 (2000).
    • 182 Uma Devi P. Radioprotective, anticarcinogenic and antioxidant properties of the Indian holy basil, Ocimum sanctum (Tulasi). Ind. J. Exp. Biol. 39(3), 185–190 (2001).
    • 183 Skoula M, Gotsiou P, Naxakis G, Johnson BC. A chemosystematic investigation on the mono-and sesquiterpenoids in the genus Origanum (Labiatae). Phytochemistry 52, 649–657 (1999).
    • 184 Aligiannis N, Kalpoutzakis E, Mitaku S, Chinou IB. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 49, 4168–4170 (2001).
    • 185 Arami S, Ahmadi A, Haeri SA. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131)I in human blood lymphocyte. Cancer Biother. Radiopharm. 28(3), 201–206 (2013).
    • 186 Ghasemnezhad Targhi R, Changizi V, Haddad F, Homayoun M, Soleymanifard Sh. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation. Avicenna J. Phytomed. 6(6), 678–685 (2016).
    • 187 Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Sriniwas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64(4), 353–356 (1998).
    • 188 Parmar VS, Jain SC, Bisht KS et al. Phytochemistry of the genus Piper. Phytochemistry 46, 597–673 (1997).
    • 189 Parmar VS, Jain SC, Gupta S et al. Polyphenols and alkaloids from Piper species. Phytochemistry 49, 1069–1078 (1998).
    • 190 Navickiene HMD, Alecio AC, Kato MJ et al. Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 55, 621–626 (2000).
    • 191 Santos PRD, Moreira DL, Guimaraes EF, Kaplan MAC. Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry 58, 547–551 (2001).
    • 192 Facundo VA, Silveira ASP, Morais SM. Constituents of Piper alatabacum Trel & Yuncker (Piperaceae). Biochem. Syst. Ecol. 33, 753–756 (2005).
    • 193 Sunila ES, Kuttan G. Protective effect of Piper longum fruit ethanolic extract on radiation induced damages in mice: a preliminary study. Fitoterapia 76(7–8), 649–655 (2005).
    • 194 Chadha YR. The Wealth of India, Vol. 8. Council for Scientific and Industrial Research. New Delhi, India (1985).
    • 195 Kritikar RK, Basu DB. Indian Medicinal Plants. Jayyed Press, Delhi, India (1975).
    • 196 Harborne JB. Comparative biochemistry of the flavonoids-IV.: correlations between chemistry, pollen morphology and systematics in the family plumbaginaceae. Phytochemistry 6(10), 1415–1428 (1967).
    • 197 Dinda B, Hajra AK, Das SK. Chemical constituents of Plumbago indica roots. Ind. J. Chem. 37B, 672–675 (1998).
    • 198 Dinda B, Das SK, Hajra AK et al. Chemical constituents of Plumbago indica roots and reactions of plumbagin: part II. Ind. J. Chem. 38B, 577–582 (1999).
    • 199 Uma Devi P, Solomon FE, Sharada AC. In vivo tumor inhibitory and radiosensitizing effects of an Indian medicinal plant, Plumbago rosea on experimental mouse tumors. Ind. J. Exp. Biol. 32(8), 523–528 (1994).
    • 200 Ganasoundari A, Zare SM, Uma Devi P. Modification of bone marrow radiosensensitivity by medicinal plant extracts. Br. J. Radiol. 70(834), 599–602 (1997).
    • 201 Del Bano MJ, Castillo J, Garcia OB et al. Radioprotective antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. J. Agric. Food Chem. 54(6), 2064–2068 (2006).
    • 202 Kotb DF. Medicinal plants in Libya. Arab Encyclopedia House, Tripoli, Libya (1985).
    • 203 Lamaison JL, Petitjean-Freytet C, Carnat A. Medicinal lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm. Acta Helv. 66, 185–188 (1991).
    • 204 Wellwood CRL, Cole RA. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield. J. Agric. Food Chem. 52, 6101–6107 (2004).
    • 205 Soyal D, Jindal A, Singh I, Goyal PK. Protective capacity of rosemary extract against radiation induced hepatic injury in mice. Iran. J. Radiat. Res. 4(4), 161–168 (2007).
    • 206 Harley RM, Atkins S, Budantsev AL et al. Labiatae. In: The Families and Genera of Vascular Plants, Lamiales, Vol. VII. Kadereit JW (Ed.). Springer, Berlin, Germany (2004).
    • 207 Giannouli AL, Kintzios SE. Essential oils of Salvia spp: examples of intraspecific and seasonal variation. In: SAGE - The Genus Salvia. Kintzios SE (Ed.). Harwood Academic Publishers, Amsterdam, the Netherlands (2000).
    • 208 Giuliani C, Maleci Bini L. Insight into the structure and chemistry of glandular trichomes of Labiatae, with emphasis on subfamily Lamioideae. Plant System. Evol. 276, 199–208 (2008).
    • 209 Babovic N, Djilas S, Jadranin M et al. Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innov. Food Sci. Emerg. Technol. 11, 98–107 (2010).
    • 210 Osman NN, Abd El-Azime A Sh. Salvia officinalis L. (Sage) ameliorates radiation-induced oxidative brain damage in rats. Arab. J. Nucl. Sci. Appl. 46(1), 297–304 (2013).
    • 211 El-Feky AM, Aboulthana WM. Phytochemical and biochemical studies of Sage (Salvia officinalis L.) UK J. Pharm. Biosci. 4(5), 56–62 (2016).
    • 212 Schmid R. A resolution of the Eugenia syzygium controversy (Myrtaceae). Am. J. Bot. 59(4), 423–436 (1972).
    • 213 Chaieb K, Hajlaoui H, Zmantar T et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother. Res. 21(6), 501–560 (2007).
    • 214 Nada AS. Efficacy of clove oil in modulating radiation-induced some biochemical disorders in male rats. J. Rad. Res. Appl. Sci. 4(2), 629–647 (2011).
    • 215 Warrier P, Nambiar V, Ramankutty C. Indian Medical Plants, Vol. 5. Orient Longman Ltd, Hyderabad, India (1996).
    • 216 Jagetia GC, Baliga MS. Syzygium cumini (Jamun) reduces the radiation-induced DNA damage in the cultured human peripheral blood lymphocytes: a preliminary study. Toxicol. Lett. 132(1), 19–25 (2002).
    • 217 Jagetia GC, Baliga M. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. J. Med. Food 79(3), 343–348 (2004).
    • 218 Sah SP, Mathela CM, Chopra K. Elucidation of possible mechanism of analgesic action of Valeriana wallichii D C. (Patchouli alcohol) in experimental animal models. Ind. J. Exp. Biol. 48(3), 289–293 (2010).
    • 219 Ghosh S, Debnath S, Hazra S et al. Valeriana wallichii root extract and fractions with activity against Leishmania spp. Parasitol. Res. 108, 861–871 (2011).
    • 220 Nadkarni KM. Indian Materia Medica, (3rd Edition). Popular Prakashan, Bombay, India (1976).
    • 221 Kapoor LD. CRC Handbook of Ayurvedic Medicinal Plants. CRC Press, FL, USA (1990).
    • 222 Katoch O, Kaushik S, Kumar MSY, Agrawala PK, Misra K. Radioprotective property of an aqueous extract from Valeriana wallichii. J. Pharm. Bioallied Sci. 4(4), 327–332 (2012).
    • 223 Sangwan RS, Chaurasiya ND, Lal P et al. Withanolide A Biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera DUNAL), a main medicinal plant in ayurveda. Chem. Pharm. Bull. 55, 1371–1375 (2007).
    • 224 Chen ZL, Wang BD, Chen MQ. Steroidal bitter principles from Tacca plantagenia structures of taccalonolide A and B. Tetrahedron Lett. 28, 1673–1675 (1987).
    • 225 Rahman A, Choudhary MI, Yousaf M et al. Five new withanolides from Withania coagulans. Heterocycles 48, 1801–1811 (1988).
    • 226 Udayakumar R, Sampath K, Ayyappan V et al. Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan induced diabetic rats. Plant Foods Hum. Nutr. 65, 91–98 (2010).
    • 227 Hosny Mansour H, Farouk Hafez H. Protective effect of Withania somnifera against radiation-induced hepatotoxicity in rats. Ecotoxicol. Environ. Saf. 80, 14–19 (2012).
    • 228 Singh G, Maurya S, Catalan C, de Lampasona MP. Studies on essential oils, Part 42: chemical, antifungal, antimicrobial and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Frag. J. 20, 1–6 (2005).
    • 229 Koch C, Reichling J, Schneele J. Inhibitory effect of essential oils against herpes simplex virus type-2. Phytomedicine 15, 71–80 (2008).
    • 230 Vendruscolo A, Takaki I, Bersani-Amado LE, Dantas JA, Bersani-Amado CA, Cuman RKN. Anti-inflammatory and antinociceptive activities of Zingiber officinale Roscoe essential oil in experimental animal models. Ind. J. Pharm. 8, 58–59 (2006).
    • 231 Jeena K, Liju VB, Kuttan R. Antioxidant, antiinflammatory and antinociceptive activities of essential oil from ginger. Ind. J. Physiol. Pharmacol. 57, 51–62 (2013).
    • 232 Zancan KC, Marques MOM, Petenate AJ, Meireles MAA. Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts. J. Supercrit. Fluids 24, 57–76 (2002).
    • 233 Tao QF, Xu Y, Lam RYY et al. Diarylheptanoids and a monoterpenoid from the rhizomes of Zingiber officinale: antioxidant and cytoprotective properties. J. Nat. Prod. 71, 12–17 (2008).
    • 234 Singh G, Kapoor IPS, Singh P, de Heluani CS, de Lampasona MP, Catalan CAN. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem. Toxicol. 46, 3295–3302 (2008).
    • 235 Jeena K, Lijju VB, Ramanath V, Kuttan R. Protection against whole body γ-irradiation induced oxidative stress and clastogenic damage in mice by ginger essential oil. Asian Pac. J. Cancer Prev. 17(3), 1325–1332 (2016).
    • 236 Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94, 550–557 (2006).
    • 237 Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010).
    • 238 Asensi-Fabado MA, Munne'-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant. Sci. 15, 582–592 (2010).
    • 239 Samarth RM, Panwar M, Kumar M, Soni A, Kumar M, Kumar A. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. Food Chem. 106, 868–873 (2008).
    • 240 Darvin M, Zastrow L, Sterry W, Lademann J. Effect of supplemented and topically applied antioxidant substances on human tissue. Skin Pharmacol. Physiol. 19(5), 238–247 (2006).
    • 241 Verhagen H, Aruoma OI, van Delft JH et al. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in vitro experiments and animal studies in vivo. Food Chem Toxicol. 41(5), 603–610 (2003).
    • 242 Kelloff GJ, Boone CW, Steele VE, Crowell JA, Lubet R, Sigman CC. Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res. 54(7 Suppl.), S2015–S2024 (1994).
    • 243 Rastogi RP, Mehrotra BN. Compendium of Indian Medicinal Plants, Volume 2. Central Drug Research Institute and National Institute of Science Communication, New Delhi, India (1980).
    • 244 Samarth RM, Kumar A. Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J. Radiat. Res. 44, 101–109 (2003).