We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/ppa-2017-0007
Free first page

References

  • 1 Lovelace MD, Varney B, Sundaram G, Lennon MJ et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 112(Pt B), 373–388 (2017).
  • 2 Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145(6), 863–874 (2011).
  • 3 Lögters TT, Laryea MD, Altrichter J, Sokolowski J et al. Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 32(1), 29–34 (2009).
  • 4 Mole DJ, Webster SP, Uings I, Zheng X et al. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis. Nat. Med. 22(2), 202–209 (2016).
  • 5 Li J, Song J, Zaytseva YY, Liu Y et al. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533(7603), 411–415 (2016).
  • 6 Dupouy S, Mourra N, Doan VK, Gompel A, Alifano M, Forgez P. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers. Biochimie 93(9), 1369–1378 (2011).
  • 7 Wu Z, Martinez-Fong D, Trédaniel J, Forgez P. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol. (Lausanne) 3, 184 (2012).
  • 8 Malouf GG, Job S, Paradis V, Fabre M et al. Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature. Hepatology 59(6), 2228–2237 (2014).
  • 9 Senegas A, Gautheron J, Maurin AG, Courtois G. IKK-related genetic diseases: probing NF-κB functions in humans and other matters. Cell Mol. Life Sci. 72(7), 1275–1287 (2015).
  • 10 Hong S, Yum S, Yoo HJ, Kang S et al. Colon-targeted cell-permeable NFκB inhibitory peptide is orally active against experimental colitis. Mol. Pharm. 9(5), 1310–1319 (2012).
  • 11 Vincendeau M, Hadian K, Messias AC, Brenke JK et al. Inhibition of canonical NF-κB signaling by a small molecule targeting NEMO-ubiquitin interaction. Sci. Rep. 6, 18934 (2016).
  • 12 De Falco F, Di Giovanni C, Cerchia C, De Stefano D et al. Novel non-peptide small molecules preventing IKKβ/NEMO association inhibit NF-κB activation in LPS-stimulated J774 macrophages. Biochem. Pharmacol. 104, 83–94 (2016).
  • 13 Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm. Res. 65(9), 665–678 (2016).
  • 14 Hevia H, Varela-Rey M, Corrales FJ, Berasain C et al. 5′-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology 39(4), 1088–1098 (2004).
  • 15 Tang Y, Zhang W, Zhang Y, Wang W et al. 5′-methylthioadenosine attenuates ischemia reperfusion injury after liver transplantation in rats. Inflammation 37(5), 1366–1373 (2014).
  • 16 Singh V, Shi W, Evans GB, Tyler PC et al. Picomolar transition state analogue inhibitors of human 5′-methylthioadenosine phosphorylase and x-ray structure with MT-immucillin-A. Biochemistry 43(1), 9–18 (2004).
  • 17 Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J. Biol. Chem. 286(25), 22426–22440 (2011).
  • 18 Zhang J, Yang Z, Dong J. P62: an emerging oncotarget for osteolytic metastasis. J. Bone Oncol. 5(1), 30–37 (2016).
  • 19 Yu HB, Kielczewska A, Rozek A, Takenaka S et al. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. J. Biol. Chem. 284(52), 36007–36011 (2009).
  • 20 Teramachi J, Silbermann R, Yang P, Zhao W et al. Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo. Leukemia 30(2), 390–398 (2016).
  • 21 Rosenber R, Seiden DJ, Hull SG, Erman M et al. APD125, a selective serotonin 5-HT2A receptor inverse agonist, significantly improves sleep maintenance in primary insomnia. Sleep 31(12), 1663–1671 (2008).
  • 22 Ancoli-Israel S, Vanover KE, Weiner DM, Davis RE, van Kammen DP. Pimavanserin tartrate, a 5-HT(2A) receptor inverse agonist, increases slow wave sleep as measured by polysomnography in healthy adult volunteers. Sleep Med. 12(2), 134–141 (2011).
  • 23 Teegarden BR, Al Shamma H, Xiong Y. 5-HT(2A) inverse-agonists for the treatment of insomnia. Curr. Top. Med. Chem. 8(11), 969–976 (2008).
  • 24 Iranzo A, Santamaria J, Tolosa E. The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med. Rev. 13(6), 385–401 (2009).
  • 25 Iranzo A, Santamaría J, Rye DB, Valldeoriola F et al. Characteristics of idiopathic REM sleep behavior disorder and that associated with MSA and PD. Neurology 65(2), 247–252 (2005).
  • 26 Degirolamo C, Sabbà C, Moschetta A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15(1), 51–69 (2016).
  • 27 Zhang F, Yu L, Lin X, Cheng P et al. Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol. Endocrinol. 29(10), 1400–1413 (2015).
  • 28 Marcelin G, Jo YH, Li X, Schwartz GJ et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3(1), 19–28 (2013).
  • 29 Goetz R, Ohnishi M, Ding X, Kurosu H et al. Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol. Cell. Biol. 32(10), 1944–1954 (2012).
  • 30 Kyrou I, Weickert MO, Gharanei S, Randeva HS, Tan BK. Fibroblast growth factors: new insights, new targets in the management of diabetes. Minerva Endocrinol. (2016) (Epub ahead of print).
  • 31 Gray SP, Jandeleit-Dahm KA. The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke. Curr. Pharm. Des. 21(41), 5933–5944 (2015).
  • 32 Clempus RE, Sorescu D, Dikalova AE, Pounkova L et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27(1), 42–48 (2007).
  • 33 Cucoranu I, Clempus R, Dikalova A, Phelan PJ et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res. 97(9), 900–907 (2005).
  • 34 Amara N, Goven D, Prost F, Muloway R et al. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65(8), 733–738 (2010).
  • 35 Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S et al. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol. doi:10.1111/bph.13532 (2016) (Epub ahead of print).
  • 36 Jiang D, Niwa M, Koong AC. Targeting the IRE1α-XBP1 branch of the unfolded protein response in human diseases. Semin. Cancer Biol. 33, 48–56 (2015).
  • 37 Celli A, Mackenzie DS, Crumrine DS, Tu CL et al. Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis. Br. J. Dermatol. 164(1), 16–25 (2011).
  • 38 Xiang Y, Stine ZE, Xia J, Lu Y et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125(6), 2293–2306 (2015).
  • 39 Katt WP, Lukey MJ, Cerione RA. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem. 9(2), 223–243 (2017).
  • 40 Shukla K, Ferraris DV, Thomas AG, Stathis M et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J. Med. Chem. 55(23), 10551–10563 (2012).
  • 41 Gross MI, Demo SD, Dennison JB, Chen L et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13(4), 890–901 (2014).
  • 42 Chen CW, Tsao N, Huang LY, Yen Y et al. The impact of dUTPase on ribonucleotide reductase-induced genome instability in cancer cells. Cell Rep. 16(5), 1287–1299 (2016).
  • 43 Saito K, Nagashima H, Noguchi K, Yoshisue K et al. First-in-human, Phase I dose-escalation study of single and multiple doses of a first-in-class enhancer of fluoropyrimidines, a dUTPase inhibitor (TAS-114) in healthy male volunteers. Cancer Chemother. Pharmacol. 73(3), 577–583 (2014).
  • 44 Hatle KM, Gummadidala P, Navasa N, Bernardo E et al. MCJ/DnaJC15, an endogenous mitochondrial repressor of the respiratory chain that controls metabolic alterations. Mol. Cell Biol. 33(11), 2302–2314 (2013).
  • 45 Navasa N, Martín I, Iglesias-Pedraz JM, Beraza N et al. Regulation of oxidative stress by methylation-controlled J protein controls macrophage responses to inflammatory insults. J. Infect. Dis. 211(1), 135–145 (2015).
  • 46 Champagne DP, Hatle KM, Fortner KA, D’Alessandro A et al. Fine-tuning of CD8(+) T cell mitochondrial metabolism by the respiratory chain repressor MCJ dictates protection to influenza virus. Immunity 44(6), 1299–1311 (2016).
  • 47 Lim JY, Park CK, Hwang SW. Biological roles of resolvins and related substances in the resolution of pain. Biomed. Res. Int. 2015, 830930 (2015).
  • 48 Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology 141(2), 166–173 (2014).
  • 49 Atar S, Ye Y, Lin Y, Freeberg SY et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am. J. Physiol. Heart Circ. Physiol. 290(5), H1960–H1968 (2006).
  • 50 Dalli J, Chiang N, Serhan CN. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21(9), 1071–1075 (2015).