We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/ppa-2019-0002
Free first page

References

  • 1. Kotlińska J, Wichmann J, Legowska A, Rolka K, Silberring J. Orphanin FQ/nociceptin but not Ro 65-6570 inhibits the expression of cocaine-induced conditioned place preference. Behav. Pharmacol. 13(3), 229–235 (2002).
  • 2. Lambert DG, Bird MF, Rowbotham DJ. Cebranopadol: a first in-class example of a nociceptin/orphanin FQ receptor and opioid receptor agonist. Br. J. Anaesth. 114(3), 364–366 (2015).
  • 3. Tzschentke TM, Rutten K. Mu-opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptor activation both contribute to the discriminative stimulus properties of cebranopadol in the rat. Neuropharmacology 129, 100–108 (2018).
  • 4. Zaveri NT, Marquez PV, Meyer ME, Hamid A, Lutfy K. The nociceptin receptor (NOP) agonist AT-312 blocks acquisition of morphine- and cocaine-induced conditioned place preference in mice. Front. Psychiatry 9, 638 (2018).
  • 5. Wang S, Chu CH, Stewart T et al. α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc. Natl Acad. Sci. USA 112(15), 1926–1935 (2015).
  • 6. Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett. 589(3), 319–325 (2015).
  • 7. Perni M, Galvagnion C, Maltsev A et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl Acad. Sci. USA 114(6), 1009–1017 (2017).
  • 8. Perni M, Flagmeier P, Limbocker R et al. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem. Biol. 13(8), 2308–2319 (2018).
  • 9. Batabyal D, Yeh SR. Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. J. Am. Chem. Soc. 129(50), 15690–15701 (2007).
  • 10. Badawy AA. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol. 27(10), 878–893 (2013).
  • 11. Lovelace MD, Varney B, Sundaram G et al. Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front. Immunol. 7, 246 (2016).
  • 12. Reinhard JF Jr, Flanagan EM, Madge DJ, Iyer R, Salter M. Effects of 540C91 [(E)-3-[2-(4’-pyridyl)-vinyl]-1H-indole], an inhibitor of hepatic tryptophan dioxygenase, on brain quinolinic acid in mice. Biochem. Pharmacol. 51(2), 159–163 (1996).
  • 13. Winters M, DuHadaway JB, Pham KN et al. Diaryl hydroxylamines as pan or dual inhibitors of indoleamine 2,3-dioxygenase-1, indoleamine 2,3-dioxygenase-2 and tryptophan dioxygenase. Eur. J. Med. Chem. 162, 455–464 (2019).
  • 14. Yabal M, Calleja DJ, Simpson DS, Lawlor KE. Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J. Leukoc. Biol. 105(2), 377–399 (2019).
  • 15. Bertinaria M, Gastaldi S, Marini E, Giorgis M. Development of covalent NLRP3 inflammasome inhibitors: chemistry and biological activity. Arch. Biochem. Biophys. doi:10.1016/j.abb.2018.11.013 (2018) (Epub ahead of print).
  • 16. Blaner WS. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol. Ther. doi:10.1016/j.pharmthera.2019.01.006 (2019) (Epub ahead of print).
  • 17. Paul A, Chiriacò MS, Primiceri E, Srivastava DN, Maruccio G. Picomolar detection of retinol binding protein 4 for early management of type II diabetes. Biosens. Bioelectron. 128, 122–128 (2019).
  • 18. Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 10(1), pii:E29 (2017).
  • 19. Fedders R, Muenzner M, Weber P, Sommerfeld M, Knauer M, Kedziora S. Liver-secreted RBP4 does not impair glucose homeostasis in mice. J. Biol. Chem. 293(39), 15269–15276 (2018).
  • 20. Li F, Xia K, Sheikh MS, Cheng J, Li C, Yang T. Retinol binding protein 4 promotes hyperinsulinism-induced proliferation of rat aortic smooth muscle cells. Mol. Med. Rep. 9(5), 1634–1640 (2014).
  • 21. Boersma YL, Newman J, Adams TE et al. The structure of vanin 1: a key enzyme linking metabolic disease and inflammation. Acta Crystallogr. D Biol. Crystallogr. 70(12), 3320–3329 (2014).
  • 22. Ferreira DW, Naquet P, Manautou JE. Influence of vanin-1 and catalytic products in liver during normal and oxidative stress conditions. Curr. Med. Chem. 22(20), 2407–2416 (2015).
  • 23. Martin F, Penet MF, Malergue F et al. Vanin-1(-/-) mice show decreased NSAID- and Schistosoma-induced intestinal inflammation associated with higher glutathione stores. J. Clin. Invest. 113(4), 591–597 (2004).
  • 24. Gensollen T, Bourges C, Rihet P et al. Functional polymorphisms in the regulatory regions of the VNN1 gene are associated with susceptibility to inflammatory bowel diseases. Inflamm. Bowel Dis. 19(11), 2315–2325 (2013).
  • 25. Kavian N, Mehlal S, Marut W et al. Imbalance of the vanin-1 pathway in systemic sclerosis. J. Immunol. 197(8), 3326–3335 (2016).
  • 26. Lang DH, Yeung CK, Peter RM et al. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol. 56(8), 1005–1012 (1998).
  • 27. Chhibber-Goel J, Singhal V, Parakh N, Bhargava B, Sharma A. The metabolite trimethylamine-N-oxide is an emergent biomarker of human health. Curr. Med. Chem. 24(36), 3942–3953 (2017).
  • 28. Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int. J. Mol. Sci. 19(10), pii: E3228 (2018).
  • 29. Schugar RC, Brown JM. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis. Curr. Opin. Lipidol. 26(5), 426–431 (2015).
  • 30. Zhu W, Buffa JA, Wang Z et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J. Thromb. Haemost. 16(9), 1857–1872 (2018).
  • 31. Enyedi P, Czirják G. Properties, regulation, pharmacology, and functions of the K2p channel, TRESK. Pflugers Arch. 467(5), 945–958 (2015).
  • 32. Lafrenière RG, Cader MZ, Poulin JF et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med. 16(10), 1157–1160 (2010).
  • 33. Enyedi P, Braun G, Czirják G. TRESK: the lone ranger of two-pore domain potassium channels. Mol. Cell. Endocrinol. 353(1-2), 75–81 (2012).
  • 34. Guo Z, Cao YQ. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS ONE 9(1), e87029 (2014).
  • 35. Bagriantsev SN, Ang KH, Gallardo-Godoy A et al. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem. Biol. 8(8), 1841–1851 (2013).
  • 36. Royal P, Andres-Bilbe A, Ávalos Prado P, Verkest C, Wdziekonski B, Schaub S. Migraine-associated TRESK mutations increase neuronal excitability through alternative translation initiation and inhibition of TREK. Neuron 101(2), 232–245 (2019).
  • 37. Heine M, Cramm-Behrens CI, Ansari A et al. Alpha-kinase 1, a new component in apical protein transport. J. Biol. Chem. 280(27), 25637–25643 (2005).
  • 38. Chiba T, Matsuo H, Sakiyama M et al. Common variant of ALPK1 is not associated with gout: a replication study. Hum. Cell. 28(1), 1–4 (2015).
  • 39. Zhou P, She Y, Dong N et al. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561(7721), 122–126 (2018).
  • 40. Kuo TM, Yeh KT, Hsu HT et al. ALPK1 affects testosterone mediated regulation of proinflammatory cytokines production. J. Steroid Biochem. Mol. Biol. 154, 150–158 (2015).
  • 41. Ryzhakov G, West NR, Franchini F et al. Alpha kinase 1 controls intestinal inflammation by suppressing the IL-12/Th1 axis. Nat. Commun. 9(1), 3797 (2018).
  • 42. Yamamoto K, Kitayama T, Ishida N et al. Identification and characterization of a potent antibacterial agent, NH125 against drug-resistant bacteria. Biosci. Biotechnol. Biochem. 64(4), 919–923 (2000).
  • 43. Liyanage VR, Rastegar M. Rett syndrome and MeCP2. Neuromolecular Med. 16(2), 231–264 (2014).
  • 44. Sharma K, Singh J, Frost EE, Pillai PP. MeCP2 in central nervous system glial cells: current updates. Acta Neurobiol. Exp. (Wars) 78(1), 30–40 (2018).
  • 45. Chen L, Chen K, Lavery LA et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112(17), 5509–5514, (2015) Correction in: Proc. Natl Acad. Sci. USA. 112(22), (2015).
  • 46. Della Ragione F, Vacca M, Fioriniello S, Pepe G, D’Esposito M. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct. Genomics 15(6), 420–431 (2016).
  • 47. Makharashvili N, Paull TT. CtIP: a DNA damage response protein at the intersection of DNA metabolism. DNA Repair. (Amst). 32, 75–81 (2015).
  • 48. Zamek-Gliszczynski MJ, Taub ME, Chothe PP et al. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin. Pharmacol. Ther. 104(5), 890–899 (2018).
  • 49. Wang K, Sun S, Li L, Tu M, Jiang H. Involvement of organic cation transporter 2 inhibition in potential mechanisms of antidepressant action. Prog. Neuropsychopharmacol. Biol. Psychiatry 53, 90–98 (2014).
  • 50. Bacq A, Balasse L, Biala G et al. Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol. Psychiatry 17(9), 926–939 (2012).
  • 51. Russ H, Sonna J, Keppler K, Baunach S, Schömig E. Cyanine-related compounds: a novel class of potent inhibitors of extraneuronal noradrenaline transport. Naunyn. Schmiedebergs Arch. Pharmacol. 348(5), 458–465 (1993).
  • 52. Amphoux A, Millan MJ, Cordi A et al. Inhibitory and facilitory actions of isocyanine derivatives at human and rat organic cation transporters 1, 2 and 3: a comparison to human alpha 1- and alpha 2-adrenoceptor subtypes. Eur. J. Pharmacol. 634(1-3), 1–9 (2010).
  • 53. Fraser-Spears R, Krause-Heuer AM, Basiouny M et al. Comparative analysis of novel decynium-22 analogs to inhibit transport by the low-affinity, high-capacity monoamine transporters, organic cation transporters 2 and 3, and plasma membrane monoamine transporter. Eur. J. Pharmacol. 842, 351–364 (2019).
  • 54. Belizaire R, Komanduri C, Wooten K, Chen M, Thaller C, Janz R. Characterization of synaptogyrin 3 as a new synaptic vesicle protein. J. Comp. Neurol. 470(3), 266–281 (2004).
  • 55. Liu C, Song X, Nisbet R, Götz J. Co-immunoprecipitation with Tau isoform-specific antibodies reveals distinct protein interactions and highlights a putative role for 2N Tau in disease. J. Biol. Chem. 291(15), 8173–8188 (2016).
  • 56. McInnes J, Wierda K, Snellinx A et al. Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau. Neuron 97(4), 823–835 (2018).
  • 57. Na JH, Lee TH, Park SB et al. In vitro and in vivo inhibitory activity of NADPH against the AmpC BER class C β-lactamase. Front. Cell. Infect. Microbiol. 8, 441 (2018).
  • 58. Na JH, Cha SS. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10. Acta Crystallogr. D Struct. Biol. 72(8), 976–985 (2016).