We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

New immunological approaches in treating and diagnosing CNS diseases

    Kathy Guo

    Department of Cellular & Molecular Medicine, Cerebrovascular Research Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA

    &
    Damir Janigro

    * Author for correspondence

    Department of Neurological Surgery, Cerebrovascular Research Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA.

    Department of Molecular Medicine, Cerebrovascular Research Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA

    Published Online:https://doi.org/10.4155/ppa.13.16

    The immune system evolved to launch effective and specific responses against pathogens. A key feature of this defense mechanism is its ability to differentiate between self and nonself. However, in autoimmune diseases, the host’s immune system fails to discriminate self versus foreign. The CNS is further protected by the blood–brain barrier. In spite of its ‘immune privilege,’ the brain is not protected from autoimmunity; perhaps paradoxically xenoantibodies can be used to treat neurological diseases. We describe patents covering treatment methods for CNS diseases with suspected or demonstrated autoimmune etiology. These include multiple sclerosis and, Alzheimer’s and Parkinson’s disease. The goal is to less invasively, yet efficiently, treat neurological diseases. Although autoimmune responses are often detrimental, recent studies have begun to harness, boost and induce immune responses as a mechanism of treatment. The patents discussed herein highlight new treatments for Alzheimer’s and Parkinson’s disease, multiple sclerosis, and seizure disorders.

    References

    • Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood–brain barrier. Epilepsia53(Suppl. 1),26–34 (2012).
    • Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J. Harrison’s Principles of Internal Medicine, Eighteenth Edition. McGraw-Hill Medical, Berkshire, UK (2011).
    • Perricone R, Perricone C, De Carolis C, Shoenfeld Y. NK cells in autoimmunity: a two-edg’d weapon of the immune system. Autoimmun. Rev.7(5),384–390 (2008).
    • Lawther BK. Blood–brain barrier. Cont. Educ. Anaesth. Crit. Care Pain11(4),128–132 (2011).
    • Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol.28(1),12–18 (2007).
    • Andersson PB, Perry VH, Gordon S. The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience48(1),169–186 (1992).
    • Chorsky RL, Yaghmai F, Hill WD, Stopa EG. Alzheimer’s disease: a review concerning immune response and microischemia. Med. Hypotheses56(1),124–127 (2001).
    • Dodel R, Neff F, Noelker C et al. Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs70(5),513–528 (2010).
    • D’Andrea MR. Add Alzheimer’s disease to the list of autoimmune diseases. Med. Hypotheses64(3),458–463 (2005).
    • 10  Ishii K, Kitagaki H, Kono M, Mori E. Decreased medial temporal oxygen metabolism in Alzheimer’s disease shown by PET. J. Nucl. Med.37(7),1159–1165 (1996).
    • 11  Lue LF, Brachova L, Civin WH, Rogers J. Inflammation, a beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol.55(10),1083–1088 (1996).
    • 12  Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology69(16),1622–1634 (2007).
    • 13  Chapman J, Bachar O, Korczyn AD, Wertman E, Michaelson DM. Antibodies to cholinergic neurons in Alzheimer’s disease. J. Neurochem.51(2),479–485 (1988).
    • 14  Monahan AJ, Warren M, Carvey PM. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell Transplant.17(4),363–372 (2008).
    • 15  Villoslada P, Moreno B, Melero I et al. Immunotherapy for neurological diseases. Clin. Immunol.128(3),294–305 (2008).
    • 16  Li J, Zhu M, Manning-Bog AB, Di Monte DA, Fink AL. Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer’s disease. FASEB J.18(9),962–964 (2004).
    • 17  Abramsky O, Litvin Y. Automimmune response to dopamine-receptor as a possible mechanism in the pathogenesis of Parkinson’s disease and schizophrenia. Perspect. Biol. Med.22(1),104–114 (1978).
    • 18  Le WD, Engelhardt J, Xie WJ, Schneider L, Smith RG, Appel SH. Experimental autoimmune nigral damage in guinea pigs. J. Neuroimmunol.57(1–2),45–53 (1995).
    • 19  Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain128(Pt 11),2665–2674 (2005).
    • 20  Staines DR. Is Parkinson’s disease an autoimmune disorder of endogenous vasoactive neuropeptides? Med. Hypotheses69(6),1208–1211 (2007).
    • 21  Cooper AA, Gitler AD, Cashikar A et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science313(5785),324–328 (2006).
    • 22  Kellinghaus C, Berning S, Immisch I et al. Intravenous lacosamide for treatment of status epilepticus. Acta Neurol. Scand.123(2),137–141 (2011).
    • 23  Caterina MJ, Leffler A, Malmberg AB et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288(5464),306–313 (2000).
    • 24  Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev.51(2),159–212 (1999).
    • 25  Kalia NP, Mahajan P, Mehra R et al. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother.67(10),2401–2408 (2012).
    • 26  Han Y, Tan TM, Lim LY. Effects of capsaicin on P-gp function and expression in Caco-2 cells. Biochem. Pharmacol.71(12),1727–1734 (2006).
    • 27  Higgins D, Dix D, Gold ME. Vagal nerve stimulation: a case report. AANA J.78(2),146–150 (2010).
    • 28  Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med.12(2),99–132 (2010).
    • 29  Fernandez M, Montalban X, Comabella M. Orchestrating innate immune responses in multiple sclerosis: molecular players. J. Neuroimmunol.225(1–2),5–12 (2010).
    • 30  Morelli A, Ravera S, Calzia D, Panfoli I. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis. Med. Hypotheses78(6),707–710 (2012).
    • 31  Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, Third Edition. Garland Science, NY, USA (1994).
    • 32  Rose JW, Carlson NG. Pathogenesis of multiple sclerosis. Continuum (Minneap. Minn.)13(5),35–62 (2007).
    • 33  Chen Z, Freedman MS. γδ T cells and multiple sclerosis: friends, foes, or both? Autoimmun. Rev.10(6),364–367 (2011).
    • 34  Wucherpfennig KW, Newcombe J, Li H, Keddy C, Cuzner ML, Hafler DA. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl Acad. Sci. USA89(10),4588–4592 (1992).
    • 35  Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol.8(4),345–350 (2007).
    • 36  Matusevicius D, Kivisakk P, He B et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler.5(2),101–104 (1999).
    • 37  Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev.14(2),155–174 (2003).
    • 38  Biegler BW, Yan SX, Ortega SB, Tennakoon DK, Racke MK, Karandikar NJ. Clonal composition of neuroantigen-specific CD8+ and CD4+ T-cells in multiple sclerosis. J. Neuroimmunol.234(1–2),131–140 (2011).
    • 39  Mattson DH, Roos RP, Arnason BG. Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature287(5780),335–337 (1980).
    • 40  Beurskens FJ, Lindorfer MA, Farooqui M et al. Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients. J. Immunol.188(7),3532–3541 (2012).
    • 101  New York University: US8012936 (2011).
    • 102  Scarsdale: US0206742 (2011).
    • 103  University College Cardiff Consultants Limited: EP2449134 (2012).
    • 104  University of Zurich: EP2167115 A2 (2010).
    • 105  Pharnext: EP2282779 (2011).
    • 106  Merch Sharp & Dohme Limited: EP1773315 (2008).
    • 107  Ramot at Tel Aviv University Limited: WO0060073 (2010).
    • 108  Cedars-Sinai Medical Center: US0086804 (2011).
    • 109  Neuronova AB: EP1443955 B1 (2012).
    • 110  Newron Pharmaceuticals, SPA: WO0089353 (2012).
    • 111  Ethicon Incorporated: WO0071778 (2006).
    • 112  Brown University: US0166196 (2011).
    • 113  ElectroCore, LLC: US0152967 (2011).
    • 114  Tel HaShomer Medical Research infrastructure and Services Ltd: EP2121971 B1 (2011).
    • 115  Teva Pharmaceutical Industries Ltd: EP1796680 (2007).
    • 116  Administracion General De La Communidad Autonima De Euskadi: EP2451970 (2012).
    • 117  Research Development Foundation: EP1753447 A2 (2012).
    • 118  Biogen Idec MA Inc.: EP1833509 (2007).
    • 119  Biotempt BV: US7560433 (2009).
    • 120  Genentech, Inc.: US0233121 (2010).
    • 121  Research Development Foundation: US0059891 (2011).
    • 122  Ramot at Tel Aviv University Ltd: US0134247 (2007).
    • 123  Ramot at Tel Aviv University Ltd: US0070249 (2011).