We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Recent advances in light-responsive on-demand drug-delivery systems

    Chase S Linsley

    Department of Bioengineering, University of California, Los Angeles, CA 90095, USA

    &
    Benjamin M Wu

    *Author for correspondence:

    E-mail Address: benwu@ucla.edu

    Department of Bioengineering, University of California, Los Angeles, CA 90095, USA

    Division of Advanced Prosthodontics & the Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, CA 90095, USA

    Published Online:https://doi.org/10.4155/tde-2016-0060

    The convergence of wearable sensors and personalized medicine enhance the ability to sense and control the drug composition and dosage, as well as location and timing of administration. To date, numerous stimuli-triggered smart drug-delivery systems have been developed to detect changes in light, pH, temperature, biomolecules, electric field, magnetic field, ultrasound and mechanical forces. This review examines the major advances within the last 5 years for the three most common light-responsive drug delivery-on-demand strategies: photochemical, photoisomerization and photothermal. Examples are highlighted to illustrate progress of each strategy in drug delivery applications, and key limitations are identified to motivate future research to advance this important field.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Acosta-Vélez GF, Wu BM. 3D pharming: direct printing of personalized pharmaceutical tablets. Polym. Sci. 2(1), 11 (2016).
    • 2 Sadee W, Dai ZY. Pharmacogenetics/genomics and personalized medicine. Hum. Mol. Genet. 14, R207–R214 (2005).
    • 3 Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). • A comprehensive review (through 2013) covering the various stimuli-responsive nanocarriers developled for smart drug-delivery systems.
    • 4 Alvarez-Lorenzo C, Concheiro A. Smart drug-delivery systems: from fundamentals to the clinic. Chem. Commun. 50(58), 7743–7765 (2014).
    • 5 Timko BP, Dvir T, Kohane DS. Remotely triggerable drug-delivery systems. Adv. Mater. 22(44), 4925–4943 (2010).
    • 6 Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug-delivery systems. Photochem. Photobiol. 85(4), 848–860 (2009).
    • 7 LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184–1191 (2003).
    • 8 Kost J, Langer R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 46(1–3), 125–148 (2001).
    • 9 Sershen S, West J. Implantable, polymeric systems for modulated drug delivery. Adv. Drug Deliv. Rev. 54(9), 1225–1235 (2002).
    • 10 Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10(9), 507–518 (2013).
    • 11 Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng. 13(10), 2369–2385 (2007).
    • 12 Agostinis P, Berg K, Cengel KA et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61(4), 250–281 (2011).
    • 13 Landon CD, Park J-Y, Needham D, Dewhirst MW. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J. 3, 38–64 (2011).
    • 14 Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).
    • 15 Zhao H, Sterner ES, Coughlin EB, Theato P. o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45(4), 1723–1736 (2012).
    • 16 Pelliccioli AP, Wirz J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 1(7), 441–458 (2002).
    • 17 Wang H, Zhang W, Gao C. Shape transformation of light-responsive pyrene-containing micelles and their influence on cytoviability. Biomacromolecules 16(8), 2276–2281 (2015).
    • 18 Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19(4), 316–317 (2001).
    • 19 Barhoumi A, Liu Q, Kohane DS. Ultraviolet light-mediated drug delivery: principles, applications, and challenges. J. Control. Rel. 219, 31–42 (2015).
    • 20 Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 10, 975–999 (2015).
    • 21 Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6 (2015).
    • 22 Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8 (1), 102 (2013).
    • 23 Eeman M, Deleu M. From biological membranes to biomimetic model membranes. Biotechnol. Agron. Soc. 14(4), 719–736 (2010).
    • 24 Jayakumar MKG, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109(22), 8483–8488 (2012).
    • 25 He SQ, Krippes K, Ritz S et al. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 51(2), 431–434 (2015).
    • 26 Zhao LZ, Peng JJ, Huang Q et al. Near- infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 24(3), 363–371 (2014).
    • 27 Puri A. Phototriggerable liposomes: current research and future perspectives. Pharmaceutics 6(1), 1–25 (2013).
    • 28 Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev. 64(11), 1005–1020 (2012).
    • 29 Miranda D, Lovell JF. Mechanisms of light-induced liposome permeabilization. Bioeng. Transl. Med. 1(3), 267–276 (2016).
    • 30 Pashkovskaya A, Kotova E, Zorlu Y et al. Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir 26(8), 5726–5733 (2010).
    • 31 Randles EG, Bergethon PR. A photodependent switch of liposome stability and permeability. Langmuir 29(5), 1490–1497 (2013).
    • 32 Rwei AY, Lee J-J, Zhan C et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112(51), 15719–15724 (2015).
    • 33 Luo D, Li N, Carter KA et al. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin–phospholipids. Small 12(22), 3039–3047 (2016).
    • 34 Carter KA, Shao S, Hoopes MI et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5, 1–11 (2014).
    • 35 Huang Y, Dong RJ, Zhu XY, Yan DY. Photo-responsive polymeric micelles. Soft Matter. 10(33), 6121–6138 (2014).
    • 36 Gohy J-F, Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev. 42(17), 7117–7129 (2013).
    • 37 Kotharangannagari VK, Sanchez-Ferrer A, Ruokolainen J, Mezzenga R. Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules 44(12), 4569–4573 (2011).
    • 38 Liu XY, He JW, Niu YL et al. Photo-responsive amphiphilic poly(alpha-hydroxy acids) with pendent o-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. Polym. Adv. Technol. 26(5), 449–456 (2015).
    • 39 Xie ZG, Hu XL, Chen XS, Sun J, Shi Q, Jing XB. Synthesis and characterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups. Biomacromolecules 9(1), 376–380 (2008).
    • 40 Goodwin AP, Mynar JL, Ma Y, Fleming GR, Fréchet JMJ. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 127(28), 9952–9953 (2005).
    • 41 Kumar S, Allard J-F, Morris D, Dory YL, Lepage M, Zhao Y. Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J. Mater. Chem. 22(15), 7252–7257 (2012).
    • 42 Cao J, Huang S, Chen Y et al. Near-infrared light-triggered micelles for fast controlled drug release in deep tissue. Biomaterials 34(26), 6272–6283 (2013).
    • 43 Cao J, Chen D, Huang S, Deng D, Tang L, Gu Y. Multifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy. Oncotarget 7(50), 82170–82184 (2016).
    • 44 Kang KA, Wang JT. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study. J. Nanobiotechnology 12(1), 56 (2014).
    • 45 Alford R, Simpson HM, Duberman J et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol. Imaging. 8(6), 341–354 (2009).
    • 46 Yang H, Mao HJ, Wan ZH et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 34(36), 9124–9133 (2013).
    • 47 Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923), 59–63 (2009).
    • 48 DeForest CA, Anseth KS. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3(12), 925–931 (2011).
    • 49 Draper ER, Eden EGB, McDonald TO, Adams DJ. Spatially resolved multicomponent gels. Nat. Chem. 7(10), 849–853 (2015).
    • 50 Bao CY, Zhu LY, Lin QN, Tian H. Building biomedical materials using photochemical bond cleavage. Adv. Mater. 27(10), 1647–1662 (2015).
    • 51 Azagarsamy MA, Anseth KS. Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew. Chem. Int. Ed. Engl. 52(51), 13803–13807 (2013). • Demonstrated selective growth factor release in vitro to stimulate sequential signaling of human mesenchymal stem cells at different times by systematically switching the light from one wavelength to another.
    • 52 Griffin DR, Schlosser JL, Lam SF, Nguyen TH, Maynard HD, Kasko AM. Synthesis of photodegradable macromers for conjugation and release of bioactive molecules. Biomacromolecules 14(4), 1199–1207 (2013).
    • 53 Yan B, Boyer J-C, Habault D, Branda NR, Zhao Y. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
    • 54 Peng K, Tomatsu I, van den Broek B et al. Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter 7(10), 4881–4887 (2011).
    • 55 Griffin DR, Kasko AM. Photoselective delivery of model therapeutics from hydrogels. ACS Macro Lett. 1(11), 1330–1334 (2012).
    • 56 Zhan CY, Wang WP, McAlvin JB et al. Phototriggered local anesthesia. Nano Lett. 16(1), 177–181 (2016). •• Demonstrated on-demand and repeated delivery of anesthesia in rat footpads in proportion to near infrared (NIR) light intensity and with minimal toxicity.
    • 57 Kaplan JH, Forbush B, Hoffman JF. Rapid photolytic release of adenosine 5′-triphosphate from a protected analog – utilization by Na-K pump of human red blood-cell ghosts. Biochemistry 17(10), 1929–1935 (1978).
    • 58 Corrie JET. Photoremovable protecting groups used for the caging of biomolecules. Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules. Goeldner M, Givens RS (Eds). Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 1–28 (2005).
    • 59 Lin WY, Peng DW, Wang B, Long L, Guo C, Yuan J. A model for light-triggered porphyrin anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur. J. Org. Chem. (5), 793–796 (2008).
    • 60 Tadokoro T, Kobayashi N, Zmudzka BZ et al. UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J. 17(6), 1177–1179 (2003).
    • 61 Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44(6), 1561–1584 (2015).
    • 62 Donato L, Mourot A, Davenport CM et al. Water-soluble, donor–acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter? -aminobutyric acid at? =800 nm. Angew. Chem. Int. Ed. Engl. 51(8), 1840–1843 (2012).
    • 63 Carling C-J, Viger ML, Viet Anh Nguyen H, Garcia AV, Almutairi A. In vivo visible light-triggered drug release from an implanted depot. Chem. Sci. 6(1), 335–341 (2015).
    • 64 Fomina N, McFearin CL, Sermsakdi M, Morachis JM, Almutairi A. Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44(21), 8590–8597 (2011).
    • 65 Lux CD, Lux J, Collet G et al. Short soluble coumarin crosslinkers for light-controlled release of cells and proteins from hydrogels. Biomacromolecules 16(10), 3286–3296 (2015).
    • 66 Lu J, Choi E, Tamanoi F, Zink JI. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4(4), 421–426 (2008).
    • 67 Angelos S, Yang YW, Khashab NM, Stoddart JF, Zink JI. Dual-controlled nanoparticles exhibiting and logic. J. Am. Chem. Soc. 131(32), 11344–11346 (2009).
    • 68 Bleger D, Hecht S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. Engl. 54(39), 11338–11349 (2015).
    • 69 Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics 2(10), 1020–1036 (2012).
    • 70 Cui Z-K, Phoeung T, Rousseau P-A et al. Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 30(36), 10818–10825 (2014).
    • 71 Shen HJ, Zhou M, Zhang Q, Keller A, Shen Y. Zwitterionic light-responsive polymeric micelles for controlled drug delivery. Colloid Polym. Sci. 293(6), 1685–1694 (2015).
    • 72 Dong MX, Babalhavaeji A, Samanta S, Beharry AA, Woolley GA. Red-shifting azobenzene photoswitches for in vivo use. Acc. Chem. Res. 48(10), 2662–2670 (2015).
    • 73 Chen S, Gao Y, Cao Z et al. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH. Macromolecules 49(19), 7490–7496 (2016).
    • 74 Yao C, Wang P, Li X et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 28(42), 9341–9348 (2016). •• Near-infrared (NIR)-triggered liposomes with UCNP released Dox on-demand and inhibited the growth of drug-resistant tumors in vivo.
    • 75 Mamaeva V, Sahlgren C, Linden M. Mesoporous silica nanoparticles in medicine-recent advances. Adv. Drug Deliv. Rev. 65(5), 689–702 (2013).
    • 76 Mai WX, Meng H. Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr. Biol. 5(1), 19–28 (2013).
    • 77 Liu JA, Bu WB, Pan LM, Shi JL. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
    • 78 Croissant J, Maynadier M, Gallud A et al. Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew. Chem. Int. Ed. Engl. 52(51), 13813–13817 (2013).
    • 79 Moratz J, Samanta A, Voskuhl J, Nalluri SKM, Ravoo BJ. Light-triggered capture and release of dna and proteins by host-guest binding and electrostatic interaction. Chemistry 21(8), 3271–3277 (2015). • Modular light-triggered nanoparticle system that uses host–guest binding of azobenzene and cyclodextrin to deliver DNA and both cationic and anionic proteins.
    • 80 Tong R, Chiang HH, Kohane DS. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl Acad. Sci. USA 110(47), 19048–19053 (2013).
    • 81 Galvan-Gonzalez A, Canva M, Stegeman GI et al. Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment. J. Opt. Soc. Am. B. 17(12), 1992–2000 (2000).
    • 82 Rao JY, Khan A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc. 135(38), 14056–14059 (2013).
    • 83 Joseph JM, Destaillats H, Hung HM, Hoffmann MR. The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton's reactions. J. Phys. Chem. A 104(2), 301–307 (2000).
    • 84 National Toxicology P. Bioassay of azobenzene for possible carcinogenicity. Natl. Cancer Inst. Carcinog. Tech. Rep. Ser. 154, 1–131 (1979).
    • 85 Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
    • 86 Kumar A, Zhang X, Liang X-J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 31(5), 593–606 (2013).
    • 87 Gandhi A, Paul A, Sen SO, Sen KK. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J. Pharmacol. 10(2), 99–107 (2015).
    • 88 Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12(7), 2313–2333 (2010).
    • 89 Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3), 409–453 (2000).
    • 90 Song XJ, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 8(2), 340–354 (2015).
    • 91 Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 149(1), 65–71 (2011).
    • 92 Feil H, Bae YH, Feijen J, Kim SW. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26(10), 2496–2500 (1993).
    • 93 Linsley CS, Quach VY, Agrawal G, Hartnett E, Wu BM. Visible light and near-infrared-responsive chromophores for drug delivery-on-demand applications. Drug Deliv. Transl. Res. 5(6), 611–624 (2015).
    • 94 Chen M-C, Ling M-H, Wang K-W, Lin Z-W, Lai B-H, Chen D-H. Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromolecules 16(5), 1598–1607 (2015).
    • 95 Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10(1), 93–101 (2016).
    • 96 Kim H, Lee H, Seong K-Y, Lee E, Yang SY, Yoon J. Visible light-triggered on-demand drug release from hybrid hydrogels and its application in transdermal patches. Adv. Healthc. Mater. 4(14), 2071–2077 (2015).
    • 97 Timko BP, Arruebo M, Shankarappa SA et al. Near-infrared-actuated devices for remotely controlled drug delivery. Proc. Natl Acad. Sci. USA 111(4), 1349–1354 (2014). •• Demonstrated on-demand release of fast-acting insulin analog from implantable, NIR-triggered drug reservoirs to regulate blood glucose levels in vivo.
    • 98 Leung SJ, Kachur XM, Bobnick MC, Romanowski M. Wavelength-selective light-induced release from plasmon resonant liposomes. Adv. Funct. Mater. 21(6), 1113–1121 (2011).
    • 99 Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15(4), 897–900 (2004).
    • 100 Pan Y, Neuss S, Leifert A et al. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 1941–1949 (2007).
    • 101 Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).
    • 102 Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26(16), 3055–3064 (2005).
    • 103 Viger ML, Sheng W, Dore K et al. Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS Nano 8(5), 4815–4826 (2014).
    • 104 Kost J, Langer R. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64, 327–341 (2012).
    • 105 Oh KT, Yin HQ, Lee ES, Bae YH. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J. Mater. Chem. 17(38), 3987–4001 (2007).
    • 106 Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002).
    • 107 Brudno Y, Mooney DJ. On-demand drug delivery from local depots. J. Control. Release 219, 8–17 (2015).
    • 108 Tagami T, Foltz WD, Ernsting MJ et al. MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 32(27), 6570–6578 (2011).
    • 109 Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 7, 3445–3471 (2012).
    • 110 Yang HW, Hua MY, Liu HL et al. Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials 32(27), 6523–6532 (2011).
    • 111 Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev. 72, 3–14 (2014).
    • 112 Shankar H, Pagel PS. Potential adverse ultrasound-related biological effects a critical review. Anesthesiology 115(5), 1109–1124 (2011).
    • 113 Kennedy S, Hu J, Kearney C et al. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials 75, 91–101 (2016).