We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs

    Alicia Graciela Cid‡

    Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta 4400, Argentina

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Analía Simonazzi‡

    Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta 4400, Argentina

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Santiago Daniel Palma

    Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Universidad Nacional de Córdoba – Consejo Nacional de Investigaciones Científicas y Técnicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba 5000, Argentina

    &
    José María Bermúdez

    *Author for correspondence: Tel.: +54 387 425 5410; Fax: +54 387 425 1006;

    E-mail Address: josemariabermudez@gmail.com

    Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta – Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, Salta 4400, Argentina

    Published Online:https://doi.org/10.4155/tde-2019-0007

    Over the last half-century, solid dispersions (SDs) have been intensively investigated as a strategy to improve drugs solubility and dissolution rate, enhancing oral bioavailability. In this review, an overview of the state of the art of SDs technology is presented, focusing on their classification, the main preparation methods, the limitations associated with their instability, and the marketed products. To fully take advantage of SDs potential, an improvement in their physical stability and the ability to prolong the supersaturation of the drug in gastrointestinal fluids is required, as well as a better scientific understanding of scale-up for defining a robust manufacturing process. Taking these limitations into account will contribute to increase the number of marketed pharmaceutical products based on SD technology.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Gribbon P, Andreas S. High-throughput drug discovery: what can we expect from HTS? Drug Discov. Today 1(10), 17–22 (2005).
    • 2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 64, 4–17 (2012).
    • 3. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 10(1), 208–212 (2008).
    • 4. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 1–10 (2012).
    • 5. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet. 22(4), 225–254 (2007).
    • 6. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995).
    • 7. Yu LX, Amidon GL, Polli JE et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19(7), 921–925 (2002).
    • 8. Stegemann S, Leveiller F, Franchi D, De Jong H, Linden H. When poor solubility becomes an issue: from early stage to proof of concept. Eur. J. Pharm. Sci. 31(5), 249–261 (2007).
    • 9. Bellantone RA. Fundamentals of amorphous systems: thermodynamic aspects. In: Amorphous Solid Dispersions. Advances inDelivery Science and Technology. Shah NSandhu HChoi DChokshi HMalick A (Eds). Springer, NY, USA, 3–34 (2014).
    • 10. Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW. Amorphous solid dispersions: Theory and Practice. Springer, NY, USA (2014).
    • 11. Williams III RO, Watts AB, Miller DA. Formulating Poorly Water Soluble Drugs. Springer, NY, USA (2012).
    • 12. Rodriguez-Aller M, Guillarme D, Veuthey J-L, Gurny R. Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Tech. 30, 342–351 (2015). • Presents and discusses the pharmaceutical strategies available to overcome poor water solubility in light of final drug product examples.
    • 13. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420(1), 1–10 (2011).
    • 14. Vemula VR, Lagishetty V, Lingala S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 5(1), 41–51 (2010).
    • 15. Singh A, Worku ZA, Van Den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 8(10), 1361–1378 (2011).
    • 16. Douroumis D, Fahr A. Drug Delivery Strategies for Poorly Water-Soluble Drugs. Wiley Online Library, NY, USA (2013).
    • 17. Van Duong T, Van Den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin. Drug Deliv. 13(12), 1681–1694 (2016).
    • 18. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 9(11), 866–872 (1961).
    • 19. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60(9), 1281–1302 (1971). • This is one of the first reviews that defines solid dispersions (SDs), describes the preparation methods and classifies them, including the different analysis for SDs characterization and results of in vivo studies.
    • 20. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J. Pharm. Sci. 101(4), 1355–1377 (2012).
    • 21. Prasad D, Jain A, Garad S. Oral delivery of poorly soluble drugs. In: Poorly Soluble Drugs. Webster GKBell RGJd J (Eds). Taylor & Francis Group, NY, USA, 149–210 (2016).
    • 22. Serajuddin A. Solid dispersion of poorly water‐soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88(10), 1058–1066 (1999).
    • 23. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50(1), 47–60 (2000). • Gives an overview of the historical background and definitions of the various systems including eutectic mixtures, SDs and solid solutions, addressing the production, the different carriers and the methods used for the characterization of SDs.
    • 24. Vaka S, Bommana M, Desai D, Djordjevic J, Phuapradit W, Shah N. Excipients for amorphous solid dispersions. In: Amorphous Solid Dispersions. Advances in Delivery Science and Technology. Shah NSandhu HChoi DChokshi HMalick A (Eds). Springer, NY, USA, 123–161 (2014).
    • 25. Allen L, Ansel HC. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems. Lippincott Williams & Wilkins, MD, USA (2013).
    • 26. Zografi G, Newman A. Interrelationships between structure and the properties of amorphous solids of pharmaceutical interest. J. Pharm. Sci. 106(1), 5–27 (2017).
    • 27. Pudipeddi M, Serajuddin AT, Mufson D. Integrated drug product development – from lead candidate selection to life-cycle management. In: The Process of New Drug Discovery and Development. Smith CGO'Donnell JT (Eds). CRC Press, FL, USA, 33–72 (2006).
    • 28. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 12(23), 1068–1075 (2007). • Authors make a deep description of the different types of SDs, remarking their strengths and weaknesses.
    • 29. Levy G. Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. Am. J. Pharm. Sci. Support. Public Health 135, 78–92 (1963).
    • 30. Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I: Theoretical considerations and discussion of the literature. J. Pharm. Sci. 54(8), 1145–1148 (1965).
    • 31. Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: Experimental evaluation of a eutectic mixture: urea‐acetaminophen system. J. Pharm. Sci. 55(5), 482–487 (1966).
    • 32. Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol urea system. J. Pharm. Sci. 55(6), 581–583 (1966).
    • 33. Goldberg A, Gibaldi M, Kanig J. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: Experimental evaluation of griseofulvin—succinic acid solid solution. J. Pharm. Sci. 55(5), 487–492 (1966).
    • 34. Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug Deliv. Transl. Res. 5(6), 552–565 (2015).
    • 35. Mohammadi G, Hemati V, Nikbakht M-R et al. In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. Powder Technol. 257, 168–174 (2014).
    • 36. Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast‐release solid dispersions of griseofulvin. J. Pharm. Sci. 58(12), 1505–1510 (1969).
    • 37. Simonelli A, Mehta S, Higuchi W. Dissolution rates of high energy polyvinylpyrrolidone (PVP)‐sulfathiazole coprecipitates. J. Pharm. Sci. 58(5), 538–549 (1969).
    • 38. Van Den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 9(2), e79–e85 (2012).
    • 39. Van Drooge D, Hinrichs W, Visser M, Frijlink H. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int. J. Pharm. 310(1), 220–229 (2006).
    • 40. Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQ. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm. Res. 27(9), 1869–1883 (2010).
    • 41. Vasanthavada M, Tong W-Q, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm. Res. 21(9), 1598–1606 (2004).
    • 42. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur. J. Pharm. Biopharm. 70(2), 493–499 (2008).
    • 43. Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res. 26(1), 139 (2009).
    • 44. Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm. Res. 26(11), 2523–2534 (2009).
    • 45. Sun Y, Tao J, Zhang GG, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J. Pharm. Sci. 99(9), 4023–4031 (2010).
    • 46. Lin D, Huang Y. A thermal analysis method to predict the complete phase diagram of drug–polymer solid dispersions. Int. J. Pharm. 399(1-2), 109–115 (2010).
    • 47. Qian F, Huang J, Zhu Q et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int. J. Pharm. 395(1-2), 232–235 (2010).
    • 48. Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory–Huggins theory. J. Pharm. Sci. 100(8), 3196–3207 (2011).
    • 49. Hallouard F, Mehenni L, Lahiani-Skiba M, Anouar Y, Skiba M. Solid dispersions for oral administration: an overview of the methods for their preparation. Curr. Pharm. Des. 22(32), 4942–4958 (2016).
    • 50. Kim K-T, Lee J-Y, Lee M-Y, Song C-K, Choi J-H, Kim D-D. Solid dispersions as a drug delivery system. J. Pharm. Investig. 41(3), 125–142 (2011).
    • 51. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 85(3), 799–813 (2013).
    • 52. Singh N, Mk S. Solid dispersion-a novel approach for enhancement of bioavailability of poorly soluble drugs in oral drug delivery system. Glob. J. Pharmaceu. Sci. 3(2), 17 (2017).
    • 53. Suzuki H, Yakushiji K, Matsunaga S et al. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J. Pharm. Sci. 107(1), 446–452 (2018).
    • 54. Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J. Drug Deliv. Sci. Technol. 47, 417–426 (2018).
    • 55. Figueirêdo CBM, Nadvorny D, Vieira ACQDM et al. Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. Eur. J. Pharm. Sci. 119, 208–218 (2018).
    • 56. Dannenfelser RM, He H, Joshi Y, Bateman S, Serajuddin AT. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol–polysorbate 80 solid dispersion carrier system. J. Pharm. Sci. 93(5), 1165–1175 (2004).
    • 57. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm. Res. 23(8), 1928–1936 (2006).
    • 58. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur. J. Pharm. Sci. 29(3-4), 278–287 (2006).
    • 59. Saffoon N, Uddin R, Huda NH, Sutradhar KB. Enhancement of oral bioavailability and solid dispersion: a review. J. Appl. Pharm. Sci. 1(7), 13–20 (2011).
    • 60. Kapoor B, Kaur R, Kour S, Behl H, Kour S. Solid dispersion: an evolutionary approach for solubility enhancement of poorly water soluble drugs. Int. J. Recent Adv. Pharm. Res. 2, 1–16 (2012).
    • 61. Tambe A, Pandita N. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. J. Drug Deliv. Sci. Technol. 44, 172–180 (2018).
    • 62. Khatri P, Shah MK, Patel N, Jain S, Vora N, Lin S. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J. Drug Deliv. Sci. Technol. 45, 110–123 (2018).
    • 63. Jiménez De Los Santos CJ, Pérez-Martínez JI, Gómez-Pantoja ME, Moyano JR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J. Drug Deliv. Sci. Technol. 42, 261–272 (2017).
    • 64. Tran TT-D, Tran PH-L, Lim J, Park JB, Choi S-K, Lee B-J. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther. Deliv. 1(1), 51–62 (2010).
    • 65. Guo S, Wang G, Wu T, Bai F, Xu J, Zhang X. Solid dispersion of berberine hydrochloride and Eudragit® S100: formulation, physicochemical characterization and cytotoxicity evaluation. J. Drug Deliv. Sci. Technol. 40, 21–27 (2017).
    • 66. Shamma RN, Basha M. Soluplus®: A novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 237, 406–414 (2013).
    • 67. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 231(2), 131–144 (2002). • In this review, the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular, the theories of carrier- and drug-controlled dissolution are highlighted.
    • 68. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19(12), 930–934 (1897).
    • 69. Nernst W. Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z. Phys. Chem. 47(1), 52–55 (1904).
    • 70. Higuchi W, Mir N, Desai S. Dissolution rates of polyphase mixtures. J. Pharm. Sci. 54(10), 1405–1410 (1965).
    • 71. Fernández-Colino A, Bermudez J, Arias F, Quinteros D, Gonzo E. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 61, 286–292 (2016).
    • 72. Romero AI, Villegas M, Cid AG, Parentis ML, Gonzo EE, Bermúdez JM. Validation of kinetic modeling of progesterone release from polymeric membranes. Asian J. Pharm. Sci. 31(1), 54–62 (2017).
    • 73. Simonazzi A, Cid AG, Paredes AJ et al. Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther. Deliv. 9(9), 623–638 (2018).
    • 74. Simonazzi A, Davies C, Cid AG, Gonzo E, Parada L, Bermúdez JM. Preparation and characterization of Poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J. Pharm. Sci. 9(9), 623–638 (2018).
    • 75. Hurter P, Thomas H, Nadig D, Embiata-Smith D, Paone A. Implementing continuous manufacturing to streamline and accelerate drug development. AAPS Newsmagazine 16, 15–19 (2013).
    • 76. Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind. Eng. Chem. Res. 50(17), 10083–10092 (2011).
    • 77. Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int. J. Pharm. 390(2), 165–173 (2010).
    • 78. Li F-Q, Hu J-H, Deng J-X, Su H, Xu S, Liu J-Y. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int. J. Pharm. 324(2), 152–157 (2006).
    • 79. Yao W-W, Bai T-C, Sun J-P, Zhu C-W, Hu J, Zhang H-L. Thermodynamic properties for the system of silybin and poly (ethylene glycol) 6000. Thermochim. Acta 437(1-2), 17–20 (2005).
    • 80. Timko RJ, Lordi NG. Thermal characterization of citric acid solid dispersions with benzoic acid and phenobarbital. J. Pharm. Sci. 68(5), 601–605 (1979).
    • 81. Emås M, Nyqvist H. Methods of studying aging and stabilization of spray-congealed solid dispersions with carnauba wax. 1. Microcalorimetric investigation. Int. J. Pharm. 197(1), 117–127 (2000).
    • 82. Hurley D, Potter CB, Walker GM, Higginbotham CL. Investigation of ethylene oxide-co-propylene oxide for dissolution enhancement of hot-melt extruded solid dispersions. J. Pharm. Sci. doi:https://doi.org/10.1016/j.xphs.2018.01.016 (2018). (Epub ahead of print).
    • 83. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm. 54(2), 107–117 (2002).
    • 84. Seo A, Holm P, Kristensen HG, Schæfer T. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. Int. J. Pharm. 259(1–2), 161–171 (2003).
    • 85. Crowley MM, Zhang F, Repka MA et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm. 33(9), 909–926 (2007).
    • 86. Follonier N, Doelker E, Cole ET. Various ways of modulating the release of diltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials. J. Control. Rel. 36(3), 243–250 (1995).
    • 87. Andrews GP, Jones DS, Diak OA, Mccoy CP, Watts AB, Mcginity JW. The manufacture and characterisation of hot-melt extruded enteric tablets. Eur. J. Pharm. Biopharm. 69(1), 264–273 (2008).
    • 88. Doelker E. Cellulose derivatives. In: Biopolymers I. Advances in Polymer Science. Langer RSPeppas NA (Eds). Springer, Heidelberg, Berlin, 199–265 (1993).
    • 89. Todd DB. Introduction to compounding. In: Plastics Compounding, Equipment and Processing. Todd DB (Ed.). Hanser Gardner Publications, OH, USA (1998).
    • 90. Gurunath S, Kumar SP, Basavaraj NK, Patil PA. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. J. Pharm. Res. 6(4), 476–480 (2013).
    • 91. Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308(1), 115–123 (2006).
    • 92. Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimation of physical stability of amorphous solid dispersion using differential scanning calorimetry. J. Therm. Anal. Calorim. 85(3), 689–692 (2006).
    • 93. Sammour OA, Hammad MA, Megrab NA, Zidan AS. Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion. AAPS PharmSciTech. 7(2), E167–E175 (2006).
    • 94. Huo T, Tao C, Zhang M et al. Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. Eur. J. Pharm. Sci. 114, 74–83 (2018).
    • 95. Adeli E. The use of spray freeze drying for dissolution and oral bioavailability improvement of azithromycin. Powder Technol. 319, 323–331 (2017).
    • 96. Mann AKP, Schenck L, Koynov A et al. Producing amorphous solid dispersions via co-precipitation and spray drying: impact to physicochemical and biopharmaceutical properties. J. Pharm. Sci. 107(1), 183–191 (2018).
    • 97. Overhoff KA, Moreno A, Miller DA, Johnston KP, Williams RO. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int. J. Pharm. 336(1), 122–132 (2007).
    • 98. Yang G, Zhao Y, Feng N, Zhang Y, Liu Y, Dang B. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J. Pharm. Sci. 10(3), 194–202 (2015).
    • 99. Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int. J. Pharm. 453(1), 253–284 (2013).
    • 100. Bikiaris DN. Solid dispersions, Part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 8(11), 1501–1519 (2011).
    • 101. Abuzar SM, Hyun S-M, Kim J-H et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int. J. Pharm. 538(1), 1–13 (2018).
    • 102. Momenkiaei F, Raofie F. Preparation of Curcuma Longa L. extract nanoparticles using supercritical solution expansion. J. Pharm. Sci. 108(4), 1581–1589 (2019).
    • 103. Wu K, Li J, Wang W, Winstead DA. Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J. Pharm. Sci. 98(7), 2422–2431 (2009).
    • 104. Muhrer G, Meier U, Fusaro F, Albano S, Mazzotti M. Use of compressed gas precipitation to enhance the dissolution behavior of a poorly water-soluble drug: Generation of drug microparticles and drug–polymer solid dispersions. Int. J. Pharm. 308(1), 69–83 (2006).
    • 105. Pestieau A, Krier F, Lebrun P, Brouwers A, Streel B, Evrard B. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int. J. Pharm. 485(1), 295–305 (2015).
    • 106. Juppo AM, Boissier C, Khoo C. Evaluation of solid dispersion particles prepared with SEDS. Int. J. Pharm. 250(2), 385–401 (2003).
    • 107. Varshosaz J, Hassanzadeh F, Mahmoudzadeh M, Sadeghi A. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol. 189(1), 97–102 (2009).
    • 108. Pathak P, Meziani MJ, Desai T, Sun Y-P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc. 126(35), 10842–10843 (2004).
    • 109. Reverchon E, De Marco I, Della Porta G. Rifampicin microparticles production by supercritical antisolvent precipitation. Int. J. Pharm. 243(1-2), 83–91 (2002).
    • 110. Lee S, Nam K, Kim MS et al. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Arch. Pharm. Res. 28(7), 866–874 (2005).
    • 111. Kalogiannis CG, Pavlidou E, Panayiotou CG. Production of amoxicillin microparticles by supercritical antisolvent precipitation. Ind. Eng. Chem. Res. 44(24), 9339–9346 (2005).
    • 112. Crawford DE. Extrusion–back to the future: using an established technique to reform automated chemical synthesis. Beilstein J. Org. Chem. 13(1), 65–75 (2017).
    • 113. Chen G-L, Hao W-H. Factors affecting zero-order release kinetics of porous gelatin capsules. Drug Dev. Ind. Pharm. 24(6), 557–562 (1998).
    • 114. Johnson DM, Taylor WF. Degradation of fenprostalene in polyethylene glycol 400 solution. J. Pharm. Sci. 73(10), 1414–1417 (1984).
    • 115. Guillaume F, Guyot-Hermann A, Duclos R et al. Elaboration and physical study of an oxodipine solid dispersion in order to formulate tablets. Drug Dev. Ind. Pharm. 18(8), 811–827 (1992).
    • 116. Suzuki H, Sunada H. Some factors influencing the dissolution of solid dispersions with nicotinamide and hydroxypropylmethylcellulose as combined carriers. Chem. Pharm. Bull. 46(6), 1015–1020 (1998).
    • 117. Johari G, Kim S, Shanker RM. Dielectric studies of molecular motions in amorphous solid and ultraviscous acetaminophen. J. Pharm. Sci. 94(10), 2207–2223 (2005).
    • 118. Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 167(1), 20–25 (2006).
    • 119. Chiou WL. Pharmaceutical applications of solid dispersion systems: x‐ray diffraction and aqueous solubility studies on griseofulvin‐polyethylene glycol 6000 systems. J. Pharm. Sci. 66(7), 989–991 (1977).
    • 120. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 97(4), 1329–1349 (2008). • In this review, authors examine the roles of different factors such as molecular mobility, thermodynamic factors, and the implication of different processing condition, in crystallization from the amorphous state of SDs.
    • 121. Aso Y, Yoshioka S, Kojima S. Molecular mobility‐based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly (vinylpyrrolidone) solid dispersions. J. Pharm. Sci. 93(2), 384–391 (2004).
    • 122. Zhou D, Grant DJ, Zhang GG, Law D, Schmitt EA. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. J. Pharm. Sci. 96(1), 71–83 (2007).
    • 123. Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev. Ind. Pharm. 41(9), 1401–1415 (2015).
    • 124. Food and Drug Administration, New Drug Application (NDA) (2019). www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/NewDrugApplicationNDA/
    • 125. Bhatnagar P, Dhote V, Chandra Mahajan S, Kumar Mishra P, Kumar Mishra D. Solid dispersion in pharmaceutical drug development: from basics to clinical applications. Curr. Drug Deliv. 11(2), 155–171 (2014).
    • 126. Newman A, Nagapudi K, Wenslow R. Amorphous solid dispersions: a robust platform to address bioavailability challenges. Ther. Deliv. 6(2), 247–261 (2015).