We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges

    Denish Bardoliwala

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    ,
    Vivek Patel

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    ,
    Ankit Javia

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    ,
    Saikat Ghosh

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    ,
    Akanksha Patel

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    &
    Ambikanandan Misra

    *Author for correspondence:

    E-mail Address: misraan@hotmail.com

    Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India

    Published Online:https://doi.org/10.4155/tde-2019-0012

    Research on siRNA is increasing due to its wide applicability as a therapeutic agent in irreversible medical conditions. siRNA inhibits expression of the specific gene after its delivery from formulation to cytosol region of a cell. RNAi (RNA interference) is a mechanism by which siRNA is silencing gene expression for a particular disease. Numerous studies revealed that naked siRNA delivery is not preferred due to instability and poor pharmacokinetic performance. Nanocarriers based delivery of siRNA has the advantage to overcome physiological barriers and protect the integrity of siRNA from degradation by RNAase. Various diseases like lung cancer, cystic fibrosis, asthma, etc can be treated effectively by local lung delivery. The selective targeted therapeutic action in diseased organ and least off targeted cytotoxicity are the key benefits of pulmonary delivery. The current review highlights recent developments in pulmonary delivery of siRNA with novel nanosized formulation approach with the proven in vitro/in vivo applications.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 806 (1998). •• Explain how siRNA works in gene silencing.
    • 2. Fire AZ, Mello CC. The nobel prize in physiology or medicine 2006. (2006) http://www.nobelprize.org/nobel_prizes/medicine/laureates
    • 3. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8(2), 129 (2009).
    • 4. Zamore PD. RNA interference: listening to the sound of silence. Nat. Struct. Mol. Biol. 8(9), 746 (2001).
    • 5. Kaiser PK, Symons RA, Shah SM et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am. J. Ophthalmol. 150(1), 33–39. e32 (2010).
    • 6. Kim DH, Rossi JJ. RNAi mechanisms and applications. BioTechniques 44(5), 613–616 (2008).
    • 7. Li S-D, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm. 3(5), 579–588 (2006).
    • 8. Li B-j, Tang Q, Cheng D et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11(9), 944 (2005).
    • 9. Lee C-C, Chiang B-L. RNA interference: new therapeutics in allergic diseases. Curr. Gene Ther. 8(4), 236–246 (2008). •• Depicts the fate of siRNA through pulmonary deliver.
    • 10. Lam JK-W, Liang W, Chan H-K. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev. 64(1), 1–15 (2012).
    • 11. Paranjpe M, Müller-Goymann C. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci. 15(4), 5852–5873 (2014).
    • 12. Carvalho TC, Peters JI, Williams III RO. Influence of particle size on regional lung deposition – what evidence is there? Int. J. Pharm. 406(1-2), 1–10 (2011).
    • 13. Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv. Drug Deliv. Rev. 58(9-10), 1030–1060 (2006). • Describes in vitro and in vivo models for assessment of pulmonary absorption and deposition.
    • 14. Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2(4), 198 (2001).
    • 15. Merkel OM, Rubinstein I, Kissel T. siRNA delivery to the lung: what's new? Adv. Drug Deliv. Rev. 75, 112–128 (2014).
    • 16. Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv. Transl. Res. 8(5), 1527–1544 (2018).
    • 17. Roy I, Vij N. Nanodelivery in airway diseases: challenges and therapeutic applications. Nanomedicine 6(2), 237–244 (2010).
    • 18. Sanders N, Rudolph C, Braeckmans K, De Smedt SC, Demeester J. Extracellular barriers in respiratory gene therapy. Adv. Drug Deliv. Rev. 61(2), 115–127 (2009).
    • 19. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest. 109(5), 571–577 (2002).
    • 20. Kolte A, Patil S, Lesimple P, Hanrahan JW, Misra A. PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. Int. J. Pharm. 524(1-2), 382–396 (2017).
    • 21. Patil S, Lalani R, Bhatt P et al. Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics. RSC Adv. 8(62), 35461–35473 (2018).
    • 22. Rosenecker J, Naundorf S, Gersting S et al. Interaction of bronchoalveolar lavage fluid with polyplexes and lipoplexes: analysing the role of proteins and glycoproteins. J. Gene Med. 5(1), 49–60 (2003).
    • 23. Merkel OM, Beyerle A, Librizzi D et al. Nonviral siRNA delivery to the lung: investigation of PEG− PEI polyplexes and their in vivo performance. Mol. Pharm. 6(4), 1246–1260 (2009).
    • 24. De Backer L, Braeckmans K, Stuart MC, Demeester J, De Smedt SC, Raemdonck K. Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J. Control. Rel. 206, 177–186 (2015).
    • 25. Benfer M, Kissel T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur. J. Pharm. Biopharm. 80(2), 247–256 (2012).
    • 26. Groneberg D, Eynott P, Lim S et al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology 40(4), 367–373 (2002).
    • 27. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58(1), 32–45 (2006).
    • 28. Lebhardt T, Roesler S, Beck-Broichsitter M, Kissel T. Polymeric nanocarriers for drug delivery to the lung. J. Drug. Deliv. Sci. Technol. 20(3), 171–180 (2010).
    • 29. Boussif O, Lezoualc'h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
    • 30. Hatakeyama H, Ito E, Akita H et al. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Control. Rel. 139(2), 127–132 (2009).
    • 31. Lee SH, Kim SH, Park TG. Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem. Biophys. Res. Commun. 357(2), 511–516 (2007).
    • 32. Choi SW, Lee SH, Mok H, Park TG. Multifunctional siRNA delivery system: polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnol. Prog. 26(1), 57–63 (2010).
    • 33. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11), 724–738 (2003).
    • 34. Yacobi NR, Malmstadt N, Fazlollahi F et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am. J. Respir. Cell Mol. Biol. 42(5), 604–614 (2010).
    • 35. Macro L, Jaiswal JK, Simon SM. Dynamics of clathrin-mediated endocytosis and its requirement for organelle biogenesis in Dictyostelium. J. Cell Sci. 125(23), 5721–5732 (2012).
    • 36. Rejman J, Bragonzi A, Conese M. Role of clathrin-and caveolae-mediated endocytosis in gene transfer mediated by lipo-and polyplexes. Mol. Ther. 12(3), 468–474 (2005).
    • 37. Chiang P-C, Alsup JW, Lai Y, Hu Y, Heyde BR, Tung D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res. Lett. 4(3), 254 (2009).
    • 38. Hickey AJ, Garcia-Contreras L. Immunological and toxicological implications of short-term studies in animals of pharmaceutical aerosol delivery to the lungs: relevance to humans. Crit. Rev. Ther. Drug Carrier Syst. 18(4), (2001).
    • 39. Chen Y, Gao D-Y, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).
    • 40. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392(1-2), 1–19 (2010).
    • 41. Scaggiante B, Dapas B, Farra R et al. Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 12(1), 11–23 (2011).
    • 42. Zhang X, Shan P, Jiang D et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279(11), 10677–10684 (2004).
    • 43. Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11(1), 50 (2005).
    • 44. Fulton A, Peters ST, Perkins GA et al. Effective treatment of respiratory alphaherpesvirus infection using RNA interference. PLoS ONE 4(1), e4118 (2009).
    • 45. Choi M, Gu J, Lee M, Rhim T. A new combination therapy for asthma using dual-function dexamethasone-conjugated polyethylenimine and vitamin D binding protein siRNA. Gene Ther. 24(11), 727 (2017).
    • 46. Patil S, Bhatt P, Lalani R et al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Adv. 6(112), 110951–110963 (2016).
    • 47. Miwata K, Okamoto H, Nakashima T et al. Intratracheal administration of siRNA dry powder targeting vascular endothelial growth factor inhibits lung tumor growth in mice. Mol. Ther. Nucleic Acids 12, 698–706 (2018).
    • 48. Garbuzenko OB, Ivanova V, Kholodovych V et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA (s). Nanomedicine 13(6), 1983–1992 (2017).
    • 49. Okuda T, Morishita M, Mizutani K, Shibayama A, Okazaki M, Okamoto H. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J. Control. Rel. 279, 99–113 (2018).
    • 50. Rosas-Taraco AG, Higgins DM, Sánchez-Campillo J, Lee EJ, Orme IM, González-Juarrero M. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis 91(1), 98–106 (2011).
    • 51. Merckx P, De Backer L, Van Hoecke L et al. Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy. Acta Biomater. 78, 236–246 (2018).
    • 52. Otsuka M, Shiratori M, Chiba H et al. Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes. Exp. Lung Res. 43(6-7), 271–282 (2017).
    • 53. Kim D-H, Park H-J, Lim S et al. Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis. Nat. Commun. 9(1), 503 (2018).
    • 54. Tomaru A, Kobayashi T, Hinneh J et al. Oligonucleotide-targeting periostin ameliorates pulmonary fibrosis. Gene Ther. 24(11), 706 (2017).
    • 55. Bohr A, Tsapis N, Andreana I et al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 18(8), 2379–2388 (2017).
    • 56. Jamali A, Mottaghitalab F, Abdoli A et al. Inhibiting influenza virus replication and inducing protection against lethal influenza virus challenge through chitosan nanoparticles loaded by siRNA. Drug Deliv. Transl. Res. 8(1), 12–20 (2018).
    • 57. Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5(1), 8–20 (2009).
    • 58. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4(5), 346 (2003). • Depicts problem associated with viral vectors for gene delivery.
    • 59. Lee SJ, Son S, Yhee JY et al. Structural modification of siRNA for efficient gene silencing. Biotechnol. Adv. 31(5), 491–503 (2013).
    • 60. Shen C, Buck AK, Liu X, Winkler M, Reske SN. Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 539(1-3), 111–114 (2003).
    • 61. Hosono T, Mizuguchi H, Katayama K et al. Adenovirus vector-mediated doxycycline-inducible RNA interference. Hum. Gene Ther. 15(8), 813–819 (2004).
    • 62. Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science 303(5656), 333–333 (2004).
    • 63. Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer 3(7), 477 (2003).
    • 64. Ruigrok M, Frijlink H, Hinrichs W. Pulmonary administration of small interfering RNA: The route to go? J. Control. Rel. 235, 14–23 (2016).
    • 65. Ghosh S, Lalani R, Patel V et al. Combinatorial nanocarriers against drug resistance in hematological cancers: opportunities and emerging strategies. J Control. Rel. 296, 114–139 (2019).
    • 66. Qiu Y, Lam J, Leung S, Liang W. Delivery of RNAi therapeutics to the airways—from bench to bedside. Molecules 21(9), 1249 (2016).
    • 67. De Backer L, Cerrada A, Perez-Gil J, De Smedt SC, Raemdonck K. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J. Control. Rel. 220(Pt B), 642–650 (2015).
    • 68. Tseng Y-C, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv. Drug Deliv. Rev. 61(9), 721–731 (2009).
    • 69. Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine 9(1), 105–120 (2014).
    • 70. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res. 17(5), 521–525 (2000).
    • 71. Wang J, Lu Z, Wientjes MG, Au JL-S. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 12(4), 492–503 (2010).
    • 72. Clark KL, Hughes SA, Bulsara P et al. Pharmacological characterization of a novel ENaCα siRNA (GSK2225745) with potential for the treatment of cystic fibrosis. Mol. Ther. Nucleic Acids 2 (2013).
    • 73. Thanki K, Blum KG, Thakur A, Rose F, Foged C. Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther. Deliv. 9(10), 731–749 (2018). •• Describes challenges and opportunities in pulmonary delivery of RNAi based drug products.
    • 74. Zamora-Avila DE, Zapata-Benavides P, Franco-Molina MA et al. WT1 gene silencing by aerosol delivery of PEI-RNAi complexes inhibits B16-F10 lung metastases growth. Cancer Gene Ther. 16(12), 892–899 (2009).
    • 75. Griesenbach U, Kitson C, Garcia ES et al. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Respir. Res. 7(1), 26 (2006).
    • 76. Chernikov IV, Gladkikh DV, Meschaninova MI et al. Cholesterol-containing nuclease-resistant siRNA accumulates in tumors in a carrier-free mode and silences MDR1 gene. Mol. Ther. Nucleic Acids 6, 209–220 (2017).
    • 77. Moschos SA, Jones SW, Perry MM et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18(5), 1450–1459 (2007).
    • 78. Semple SC, Klimuk SK, Harasym TO et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510(1-2), 152–166 (2001). • Describes role of cationic lipids for pulmonary delivery of siRNA.
    • 79. Semple SC, Akinc A, Chen J et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28(2), 172 (2010).
    • 80. Love KT, Mahon KP, Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107(5), 1864–1869 (2010).
    • 81. Akinc A, Zumbuehl A, Goldberg M et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26(5), 561 (2008).
    • 82. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4(7), 581 (2005).
    • 83. Xie Y, Merkel OM. Pulmonary delivery of siRNA via polymeric vectors as therapies of asthma. Arch. Pharm. (Weinheim) 348(10), 681–688 (2015).
    • 84. Zhao M-D, Cheng J-L, Yan J-J et al. Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int. J. Nanomedicine 11, 1323 (2016).
    • 85. Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 21(3), 133–147 (2011).
    • 86. Putnam D. Polymers for gene delivery across length scales. Nat. Mater. 5(6), 439 (2006).
    • 87. Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan–DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules 14(6), 1732–1740 (2013).
    • 88. Cun D, Jensen LB, Nielsen HM, Moghimi M, Foged C. Polymeric nanocarriers for siRNA delivery: challenges and future prospects. J. Biomed. Nanotechnol. 4(3), 258–275 (2008).
    • 89. Hsu CY, Uludağ H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials 33(31), 7834–7848 (2012).
    • 90. Xie Y, Kim NH, Nadithe V et al. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J. Control. Rel. 229, 120–129 (2016).
    • 91. Steele TW, Zhao X, Tarcha P, Kissel T. Factors influencing polycation/siRNA colloidal stability toward aerosol lung delivery. Eur. J. Pharm. Biopharm. 80(1), 14–24 (2012).
    • 92. Xu C-X, Jere D, Jin H et al. Poly (ester amine)-mediated, aerosol-delivered Akt1 small interfering RNA suppresses lung tumorigenesis. Am. J. Respir. Crit. Care Med. 178(1), 60–73 (2008).
    • 93. Luo Y, Zhai X, Ma C et al. An inhalable β2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J. Control. Rel. 162(1), 28–36 (2012).
    • 94. Park S-C, Nam J-P, Kim Y-M, Kim J-H, Nah J-W, Jang M-K. Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. Int. J. Nanomedicine 8, 3663 (2013).
    • 95. Bao Y, Jin Y, Chivukula P et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res. 30(2), 342–351 (2013). • Describes effect of PEGtlation on siRNA delivery.
    • 96. Werfel TA, Jackson MA, Kavanaugh TE et al. Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo. J. Control. Rel. 255, 12–26 (2017).
    • 97. Yu H, Xu Z, Chen X et al. Reversal of lung cancer multidrug resistance by p H-R esponsive micelleplexes mediating co-d elivery of siRNA and paclitaxel. Macromol. Biosci. 14(1), 100–109 (2014).
    • 98. Yu H, Zou Y, Jiang L et al. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials 34(11), 2738–2747 (2013).
    • 99. Liu S, Nugroho AE, Shudou M, Maeyama K. Regulation of mucosal mast cell activation by short interfering RNAs targeting syntaxin4. Immunol. Cell Biol. 90(3), 337–345 (2012).
    • 100. Cheng Y, Yumul RC, Pun SH. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 55(39), 12013–12017 (2016).
    • 101. Feldmann DP, Cheng Y, Kandil R et al. In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. J. Control. Rel. 276, 50–58 (2018).
    • 102. Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm. 367(1-2), 195–203 (2009).
    • 103. Kong W-H, Sung D-K, Shim Y-H et al. Efficient intracellular siRNA delivery strategy through rapid and simple two steps mixing involving noncovalent post-PEGylation. J. Control. Rel. 138(2), 141–147 (2009).
    • 104. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Rel. 161(2), 505–522 (2012).
    • 105. Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16(10), 1217–1226 (2002).
    • 106. Qaddoumi MG, Gukasyan HJ, Davda J, Labhasetwar V, Kim K-J, Lee V. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis. 9, 559–568 (2003).
    • 107. Das J, Das S, Paul A, Samadder A, Bhattacharyya SS, Khuda-Bukhsh AR. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol. Lett. 225(3), 454–466 (2014).
    • 108. Su W-P, Cheng F-Y, Shieh D-B, Yeh C-S, Su W-C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int. J. Nanomedicine 7, 4269 (2012).
    • 109. Grabowski N, Hillaireau H, Vergnaud J et al. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int. J. Pharm. 454(2), 686–694 (2013).
    • 110. Ali H, Kalashnikova I, White MA, Sherman M, Rytting E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm. 454(1), 149–157 (2013).
    • 111. Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J. Control. Rel. 125(2), 145–154 (2008).
    • 112. Alameh M, DeJesus D, Jean M et al. Low molecular weight chitosan nanoparticulate system at low N: P ratio for nontoxic polynucleotide delivery. Int. J. Nanomedicine 7, 1399 (2012).
    • 113. Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomater. 47, 71–80 (2017).
    • 114. Lavertu M, Methot S, Tran-Khanh N, Buschmann MD. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27(27), 4815–4824 (2006).
    • 115. Jere D, Jiang H-L, Kim Y-K et al. Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int. J. Pharm. 378(1-2), 194–200 (2009).
    • 116. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J. Clin. Invest. 117(12), 3623–3632 (2007).
    • 117. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39(2), 268–307 (2014).
    • 118. Thakur S, Kesharwani P, Tekade RK, Jain NK. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer 59, 67–92 (2015).
    • 119. Wu J, Zhou J, Qu F, Bao P, Zhang Y, Peng L. Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem. Commun. (3), 313–315 (2005).
    • 120. Navarro G, de ILarduya CT. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine 5(3), 287–297 (2009).
    • 121. Shcharbin D, Dzmitruk V, Shakhbazau A et al. Fourth generation phosphorus-containing dendrimers: prospective drug and gene delivery carrier. Pharmaceutics 3(3), 458–473 (2011).
    • 122. Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SR. Poly (amidoamine) dendrimer nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol. Pharm. 11(6), 1808–1822 (2014).
    • 123. Bielski E, Zhong Q, Mirza H et al. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int. J. Pharm. 527(1-2), 171–183 (2017).
    • 124. Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 34(4), 1289–1301 (2013).
    • 125. Taratula O, Garbuzenko OB, Kirkpatrick P et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J. Control. Rel. 140(3), 284–293 (2009).
    • 126. Cabral-Marques H, Almeida R. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 73(1), 121–129 (2009).
    • 127. Hibbitts A, O'mahony A, Forde E et al. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J. Aerosol. Med. Pulm. Drug. Deliv. 27(6), 466–477 (2014).
    • 128. Menuel S, Fontanay S, Clarot I, Duval RE, Diez L, Marsura A. Synthesis and complexation ability of a novel bis-(guanidinium)-tetrakis-(β-cyclodextrin) dendrimeric tetrapod as a potential gene delivery (DNA and siRNA) system. Study of cellular siRNA transfection. Bioconjug. Chem. 19(12), 2357–2362 (2008).
    • 129. Mandal B, Bhattacharjee H, Mittal N et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9(4), 474–491 (2013). •• Depicts role of Hybrid nanoparticle in the pulmonary delivery of siRNA.
    • 130. Jensen DK, Jensen LB, Koocheki S et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J. Control. Rel. 157(1), 141–148 (2012).
    • 131. Yang Y, Cheow WS, Hadinoto K. Dry powder inhaler formulation of lipid–polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles. Int. J. Pharm. 434(1-2), 49–58 (2012).
    • 132. Eguchi A, Dowdy SF. siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci. 30(7), 341–345 (2009).
    • 133. Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev. 59(2-3), 134–140 (2007).
    • 134. Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis. 38(1), 1–7 (2007).
    • 135. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31(11), 2717–2724 (2003).
    • 136. Veldhoen S, Laufer SD, Trampe A, Restle T. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res. 34(22), 6561–6573 (2006).
    • 137. Moschos SA, Williams AE, Lindsay MA. Cell-penetrating-peptide-mediated siRNA lung delivery. Biochemical Society Transactions, Volume 35, part 4, Cell penetrating peptide. Portland Press Limited, 807–810 (2007)
    • 138. Varshosaz J, Taymouri S. Hollow inorganic nanoparticles as efficient carriers for siRNA delivery: a comprehensive review. Curr. Pharm. Des. 21(29), 4310–4328 (2015).
    • 139. Cai R-Q, Liu D-Z, Cui H et al. Charge reversible calcium phosphate lipid hybrid nanoparticle for siRNA delivery. Oncotarget 8(26), 42772 (2017).
    • 140. Taratula O, Garbuzenko OB, Chen AM, Minko T. Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J. Drug. Target. 19(10), 900–914 (2011).
    • 141. Conde J, Tian F, Hernández Y et al. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 34(31), 7744–7753 (2013).
    • 142. Durcan N, Murphy C, Cryan S-A. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol. Pharm. 5(4), 559–566 (2008). •• The importance of N/P ratio has been justify.
    • 143. Mainelis G, Seshadri S, Garbuzenko O, Han T, Wang Z, Minko T. Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice. J. Aerosol. Med. Pulm. Drug. Deliv. 26(6), 345–354 (2013).
    • 144. Xue W, Dahlman JE, Tammela T et al. Small RNA combination therapy for lung cancer. Proc. Natl Acad. Sci. USA 111 (34), E3553–E3561 (2014).
    • 145. Sung DK, Kong WH, Park K et al. Noncovalenly PEGylated CTGF siRNA/PDMAEMA complex for pulmonary treatment of bleomycin-induced lung fibrosis. Biomaterials 34(4), 1261–1269 (2013).
    • 146. Ding L, Zhu C, Yu F et al. Pulmonary delivery of polyplexes for combined PAI-1 gene silencing and CXCR4 inhibition to treat lung fibrosis. Nanomedicine 14(6), 1765–1776 (2018).
    • 147. Garbuzenko OB, Ivanova V, Kholodovych V et al. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine 13(6), 1983–1992 (2017).
    • 148. Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech 8, 1–22 (2018).
    • 149. Mukherjee B, Maji R, Roychowdhury S, Ghosh S. Toxicological concerns of engineered nanosize drug delivery systems. Am. J. Ther. 23(1), e139–e150 (2016).
    • 150. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm. Res. 10(7), 1093–1095 (1993).
    • 151. Cryan S-A, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliv. Rev. 59(11), 1133–1151 (2007).
    • 152. DeVincenzo J, Lambkin-Williams R, Wilkinson T et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl Acad. Sci. USA 107(19), 8800–8805 (2010).
    • 153. Ulanova M, Duta F, Puttagunta L, Schreiber AD, Befus AD. Spleen tyrosine kinase (Syk) as a novel target for allergic asthma and rhinitis. Expert Opin. Ther. Targets 9(5), 901–921 (2005).
    • 154. Borreli L. FDA approved patisiran, first treatment for polyneuropathy in hAATR. Neurology Today (2018).
    • 155. Tatiparti K, Sau S, Kashaw S, Iyer A. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials 7(4), 77 (2017). •• Gives brief information about first US FDA approved formulation of siRNA for polyneuropathy.