We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation

    Dinesh Kumar Chellappan

    *Author for correspondence: Tel.: +63 012 636 1308;

    E-mail Address: dineshkumarchellappan.imu@gmail.com

    Department of Life Sciences, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Neoh Jia Yee

    School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Bhalqish Jeet Kaur Ambar Jeet Singh

    School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Jithendra Panneerselvam

    Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Thiagarajan Madheswaran

    Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Jestin Chellian

    Department of Life Sciences, International Medical University, Kuala Lumpur, Malaysia 57000

    ,
    Saurabh Satija

    School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India

    ,
    Meenu Mehta

    School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India

    ,
    Monica Gulati

    School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara-144411, Punjab, India

    ,
    Gaurav Gupta

    School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, 302017, Jaipur, India

    &
    Kamal Dua

    Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia

    Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, The University of Newcastle, Callaghan, Australia

    Published Online:https://doi.org/10.4155/tde-2019-0019

    Aim: Our aim was to develop and characterize a nanogel formulation containing both glibenclamide and quercetin and to explore the permeation profile of this combination. Methods: Drug-loaded nanogel was prepared by ionic gelation. In addition, optimum encapsulation efficiencies of glibenclamide and quercetin were also obtained. The average nanoparticle size at optimum conditions was determined by Zetasizer. Results: The particle size of the nanogel was found to be 370.4 ± 4.78 nm with a polydispersity index of 0.528 ± 0.04, while the λ potential was positive in a range of 17.6 to 24.8 mV. The percentage cumulative drug release also showed favorable findings. Conclusion: The chitosan nanogel could be a potential alternative for delivering glibenclamide and quercetin through skin.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Salata OV. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2(1), 3 (2004).
    • 2. Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J. Nanobiotechnol. 14(1), 39 (2016).
    • 3. Duhan J, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S. Nanotechnology: the new perspective in precision agriculture. Biotech. Rep. 5, 11–23 (2017).
    • 4. Chellappan DK, Panneerselvam J, Madheswaran T et al. Nanogels linked with chitosan: a perspective. Minerva. Med. 109(3), 254–255 (2018). • Discusses on the applications of nanogels linked with chitosan.
    • 5. Chellappan DK, Ng ZY, Wong JY et al. Immunological axis of curcumin-loaded vesicular drug-delivery systems. Fut. Med. Chem. 10(8), 839–844 (2018).
    • 6. Dua K, de Jesus Andreoli Pinto T, Chellappan DK, Gupta G, Bebawy M, Hansbro PM. Advancements in nano drug delivery systems: a challenge for biofilms in respiratory diseases. Panmin. Med. 60(1), 35–36 (2018).
    • 7. Chellappan DK, Hansbro PM, Dua K et al. Vesicular systems containing curcumin and their applications in respiratory disorders – a mini review. Pharm. Nanotechnol. 5(4), 250–254 (2017).
    • 8. Jeevanandam J, Chan Y, Danquah M. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie 128–129, 99–112 (2016). • Discusses on the latest developments, impacts and challenges in nanotechnology and drug discovery.
    • 9. Ray A, Mandal A, Joseph M, Mitra A. Recent patents on nanoparticles and nanoformulations for cancer therapy. Recent. Pat. Drug. Deliv. Formulation. 10(1), 11–23 (2016).
    • 10. Dash T, Konkimalla V. Nanoformulations for delivery of biomolecules: focus on liposomal variants for siRNA delivery. Crit. Rev. Ther. Drug Carr. Sys. 30(6), 469–93 (2013).
    • 11. Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr. Drug. Targets. doi: 10.2174/1389450119666180326122831 (2018).
    • 12. Awasthi R, Rathbone MJ, Hansbro PM, Bebawy M, Dua K. Therapeutic prospects of microRNAs in cancer treatment through nanotechnology. Drug. Deliv. Transl. Res. 8(1), 97–110 (2018).
    • 13. Vicario-de-la-Torre M, Forcada J. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels 3(2), 16 (2017).
    • 14. Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: the application of nanogel in drug delivery. Mat. Sci. Engineer: C. 60, 560–568 (2016).
    • 15. Oh J, Drumright R, Siegwart D, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog. Polymer. Sci. 33(4), 448–477 (2008). •• Discusses on the methods of development of nanogels for targeted delivery.
    • 16. Zhang Q, Colazo J, Berg D, Mugo S, Serpe M. Multiresponsive nanogels for targeted anticancer drug delivery. Mol. Pharma. 14(8), 2624–2628 (2017).
    • 17. Vinogradov S. Nanogels in the race for drug delivery. Nanomedicine 5(2), 165–168 (2010).
    • 18. Quan S, Wang Y, Zhou A, Kumar P, Narain R. Galactose-based thermosensitive nanogels for targeted drug delivery of iodoazomycin arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma. Biomacromology 16(7), 1978–1986 (2015).
    • 19. Eckmann D, Composto R, Tsourkas A, Muzykantov V. Nanogel carrier design for targeted drug delivery. J. Mater. Chem. B. 2(46), 8085–8097 (2014). • Discusses on the applications of nanogel carrier design in the field of medicine.
    • 20. Gil M, Thambi T, Phan V, Kim S, Lee D. Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J. Mater. Chem. B. 5(34), 7140–7152 (2017).
    • 21. Yu J, Zhang Y, Sun W et al. Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale 8(17), 9178–9184 (2016).
    • 22. Chacko R, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug. Del. Rev. 64(9), 836–851 (2012). • Discusses on the applications of nanogels in the field of medicine.
    • 23. Kang H, Trondoli A, Zhu G et al. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS. Nano 5(6), 5094–5099 (2011).
    • 24. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm. 455(1–2), 219–28 (2013).
    • 25. Du H, Yang X, Zhai G. Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine 9(5), 723–740 (2014).
    • 26. Liu Z, Lv D, Liu S et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 8(4), e60190 (2013).
    • 27. Nagarwal R, Nath Singh P, Kant S, Maiti P, Pandit J. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem. Pharm. Bull. 59(2), 272–278 (2011).
    • 28. Islam P, Water J, Bohr A, Rantanen J. Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics 9(1), 1 (2016).
    • 29. Makita-Chingombe F, Kutscher H, DiTursi S, Morse G, Maponga C. Poly(lactic-co-glycolic) acid-chitosan dual loaded nanoparticles for antiretroviral nanoformulations. J. Drug Del. 2016, 3810175 (2016).
    • 30. Brunel F, Véron L, Ladavière C, David L, Domard A, Delair T. Synthesis and structural characterization of chitosan nanogels. Langmuir 25(16), 8935–8943 (2009).
    • 31. Farag R, Mohamed R. Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules. 18(1), 190–203 (2012).
    • 32. Lin C, Chen C, Lin Z, Fang J. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J. Food. Drug. Anal. 25(2), 219–234 (2017).
    • 33. Yuan H, Chen C, Chai G, Du Y, Hu F. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol. Pharm. 10(5), 1865–1873 (2013).
    • 34. Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur. J. Pharm. Sci. 26(2), 219–230 (2005).
    • 35. Behera A, Sahoo S. Preparation and evaluation of glibenclamide-loaded biodegradable nanoparticles. Trop. J. Pharm. Res. 11(3), (2012). • Describes the preparation and evaluation of glibenclamide nanoparticles.
    • 36. Gelperina S, Kisich K, Iseman M, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Amer. J. Res. Crit. Care. Med. 172(12), 1487–1490 (2005).
    • 37. Kadam R, Bourne D, Kompella U. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug. Met. Disp. 40(7), 1380–1388 (2012).
    • 38. Chitkara D, Nikalaje S, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug. Del. Transl. Res. 2(2), 112–123 (2012).
    • 39. Testa G, Gamba P, Badilli U et al. Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 9(5), e96795 (2014).
    • 40. Pool H, Quintanar D, Figueroa J et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J. Nanomaterials 2012, 1–12 (2012).
    • 41. Hendrawati A, Akhmad S, Sadewa A, Tasmini. The effect ofcombination of quercetin and glibenclamide on myocardial nuclear factor erythroid 2-related factor 2 (Nrf2) expression in Type 2 diabetic rat. Bangla. J. Med. Sci. 16(2), 302–306 (2017). •• Discusses on the synergistic therapeutic effect of glibenclamide and quercetin in diabetes.
    • 42. Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Nat. Poly. Drug. Del. Sys. 33–93 (2016).
    • 43. Dangi RS, Shakya S. Preparation, optimization and characterization of PLGA nanoparticle. Intern. J. Pharm. Life Sci. 4(7), 2810–2818 (2013).
    • 44. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian. J. Pharm. Sci. 11(3), 404–416 (2016).
    • 45. Madan JR, Sagar B, Chellappan DK, Dua K. Development and evaluation of transdermal organogels containing nicorandil. Antiinflamm. Antialler. Agents. Med. Chem. 12(3), 246–252 (2013).
    • 46. Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug. Deliv. Transl. Res. 6(5), 511–518 (2016).
    • 47. Madan JR, Adokar BR, Dua K. Development and evaluation of in situ gel of pregabalin. Int. J. Pharm. Investig. 5(4), 226–233 (2015).
    • 48. Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int. J. Pharm. Investig. 4(2), 60–64 (2014).
    • 49. Dua K, Pabreja K, Ramana MV. Aceclofenac topical dosage forms: in vitro and in vivo characterization. Acta Pharm. 60(4), 467–478 (2010).
    • 50. Ali H, Hanafy A. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J. Pharm. Sci. 402–410 (2017).
    • 51. Michaels A, Chandrasekaran S, Shaw J. Drug permeation through human skin: theory and in-vitro experimental measurement. AIChE. J. 21(5), 985–996 (1975).
    • 52. Koukaras E, Papadimitriou S, Bikiaris D, Froudakis G. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol. Pharm. 9(10), 2856–2862 (2012).
    • 53. De Pinho Neves A, Milioli C, Müller L, Riella H, Kuhnen N, Stulzer H. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Coll. Surf A. Physicochem. Engineer. Asp. 445, 34–39 (2014).
    • 54. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Coll. Surf B. Biointer. 90, 21–27 (2012).
    • 55. Abioye A, Issah S, Kola-Mustapha A. Ex vivo skin permeation and retention studies on chitosan-ibuprofen-gellan ternary nanogel prepared by in situ ionic gelation technique-a tool for controlled transdermal delivery of ibuprofen. Inter. J. Pharm. 490(1–2), 112–130 (2015).
    • 56. Kunjachan S, Jose S. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian. J. Pharm. 4(2), 148 (2010). • Discusses on the important procedures in the synthesis of nanogels by ionic gelation method.
    • 57. Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Coll. Surf B. Biointer. 76(1), 292–297 (2010).
    • 58. Ribeiro A, Silva C, Ferreira D, Veiga F. Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. Eur. J. Pharm. Sci. 25(1), 31–40 (2005).
    • 59. Juttulapa M, Piriyaprasarth S, Takeuchi H, Sriamornsak P. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian. J. Pharm. Sci. 12(1), 21–7 (2017).
    • 60. Katas H, Alpar H. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Cont. Rel. 115(2), 216–225 (2006).
    • 61. Islam P, Water J, Bohr A, Rantanen J. Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics 9(1), 1 (2016).
    • 62. Vedakumari W, Ayaz N, Karthick A, Senthil R, Sastry T. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials - fabrication, characterization and in vivo analysis. Eur. J. Pharm. Sci. 97, 106–112 (2017).
    • 63. Mohammadpour Dounighi N, Eskandari R, Avadi MR, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J. Ven. Ani. Tox. Incl. Trop. Dis. 18(1), 44–52 (2012).
    • 64. Ruiz-Caro R, Veiga-Ochoa M. Characterization and dissolution study of chitosan freeze-dried systems for drug controlled release. Molecules 14(11), 4370–4386 (2009).
    • 65. Shaik HR, Haribabu R, Md Khajamohiddin et al. Transdermal drug delivery system-simplified medication regimen – a review. Res. J. Pharm. Biol. Chem. 2(4), 223–228 (2011).