We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Different oral cancer scenarios to personalize targeted therapy: Boron Neutron Capture Therapy translational studies

    Andrea Monti Hughes

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

    ,
    Jessica A Goldfinger

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Iara S Santa Cruz

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Emiliano CC Pozzi

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Silvia Thorp

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Paula Curotto

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Marcela A Garabalino

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    María E Itoiz

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    Facultad de Odontología, Universidad de Buenos Aires, CABA, C1122AAH, Argentina

    ,
    Mónica A Palmieri

    Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, C1428EGA, Argentina

    ,
    Paula Ramos

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Elisa M Heber

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    ,
    Romina F Aromando

    Facultad de Odontología, Universidad de Buenos Aires, CABA, C1122AAH, Argentina

    ,
    David W Nigg

    Idaho National Laboratory, ID 83415, USA

    ,
    Hanna Koivunoro

    Neutron Therapeutics Finland, Helsinki, Finland

    ,
    Verónica A Trivillin

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

    &
    Amanda E Schwint

    *Author for correspondence: Tel.: +54 11 6772 7149; Fax: +54 11 6772 7188;

    E-mail Address: schwint@cnea.gov.ar

    Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), San Martín, Provincia de Buenos Aires, B1650KNA, Argentina

    Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

    Published Online:https://doi.org/10.4155/tde-2019-0022

    Boron neutron capture therapy (BNCT) is a targeted therapy, which consists of preferential accumulation of boron carriers in tumor followed by neutron irradiation. Each oral cancer patient has different risks of developing one or more carcinomas and/or oral mucositis induced after treatment. Our group proposed the hamster oral cancer model to study the efficacy of BNCT and associated mucositis. Translational studies are essential to the advancement of novel boron delivery agents and targeted strategies. Herein, we review our work in the hamster model in which we studied BNCT induced mucositis using three different cancerization protocols, mimicking three different clinical scenarios. The BNCT-induced mucositis increases with the aggressiveness of the carcinogenesis protocol employed, suggesting that the study of different oral cancer patient scenarios would help to develop personalized therapies.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Rivera C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 8(9), 11884–11894 (2015).
    • 2. Islam S, Abiko Y, Uehara O, Chiba I. Sirtuin 1 and oral cancer. Oncol. Lett. 17(1), 729–738 (2019).
    • 3. Kumar M, Nanavati R, Modi TG, Dobariya C. Oral cancer: etiology and risk factors: a review. J. Cancer. Res. Ther. 12(2), 458–463 (2016).
    • 4. Andreassen CN, Eriksen JG, Jensen K et al. IMRT – biomarkers for dose escalation, dose de-escalation and personalized medicine in radiotherapy for head and neck cancer. Oral Oncol. 86, 91–99 (2018).
    • 5. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 63(8), 1727–1730 (2003).
    • 6. Jaiswal G, Jaiswal S, Kumar R, Sharma A. Field cancerization: concept and clinical implications in head and neck squamous cell carcinoma. J. Exp. Ther. Oncol. 10, 209–214 (2013).
    • 7. Monti-Hughes A, Aromando RF, Pérez MA, Schwint AE, Itoiz ME. The hamster cheek pouch model for field cancerization studies. Periodontol. 2000 67(1), 292–311 (2015a). • This review by our group describes the hamster cheek pouch oral cancer model and its value to study the inhibitory effect of BNCT on the development of new tumors and associated mucositis in the precancer model (6-week cancerization protocol).
    • 8. Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral cancer: genetics and the role of precision medicine. Dent. Clin. North. Am. 62(1), 29–46 (2018). •• This paper provides current general concepts about oral cancer and highlights the importance of the integration of science and medicine for the study of new targeted and personalized strategies in oral cancer.
    • 9. Ford PJ, Farah CS. Early detection and diagnosis of oral cancer: strategies for improvement. J. Cancer Policy 1, e2–e7 (2013).
    • 10. Chung CM, Lee CH, Chen MK et al. Combined genetic biomarkers and betel quid chewing for identifying high-risk group for oral cancer occurrence. Cancer Prev. Res. (Phila) 10(6), 355–362 (2017).
    • 11. Rimal J, Shrestha A, Maharjan IK, Shrestha S, Shah P. Risk assessment of smokeless tobacco among oral precancer and cancer patients in eastern developmental region of Nepal. Asian Pac. J. Cancer Prev. 20(2), 411–415 (2019).
    • 12. Jensen SB, Peterson DE. Oral mucosal injury caused by cancer therapies: current management and new frontiers in research. J. Oral Pathol. Med. 43(2), 81–90 (2014).
    • 13. Cinausero M, Aprile G, Ermacora P et al. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front. Pharmacol. 8, 354 (2017). •• Paper that summarizes the current epidemiology of mucositis, the pathobiology, risk factors and mentions animal models as useful tools to study this adverse effect.
    • 14. Aghamohammadi A, Moslemi D, Akbari J et al. The effectiveness of Zataria extract mouthwash for the management of radiation-induced oral mucositis in patients: a randomized placebo-controlled double-blind study. Clin. Oral Investig. 22(6), 2263–2272 (2018).
    • 15. Mallick S, Benson R, Rath GK. Radiation induced oral mucositis: a review of current literature on prevention and management. Eur. Arch. Otorhinolaryngol. 273(9), 2285–2293 (2016).
    • 16. Sangild PT, Shen RL, Pontoppidan P, Rathe M. Animal models of chemotherapy-induced mucositis: translational relevance and challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 314(2), G231–G246 (2018).
    • 17. Villa A, Sonis ST. Mucositis: pathobiology and management. Curr. Opin. Oncol. 27(3), 159–64 (2015).
    • 18. Kankaanranta L, Seppälä T, Koivunoro H et al. Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a Phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 82(1), e67–e75 (2012). • This paper is important as an example of a clinical study of BNCT for head and neck cancer patients.
    • 19. Lim D, Quah DS, Leech M, Marignol L. Clinical potential of boron neutron capture therapy for locally recurrent inoperable previously irradiated head and neck cancer. Appl. Radiat. Isot. 106, 237–241 (2015).
    • 20. Schwint AE, Trivillin VA. ‘Close-to-ideal’ tumor boron targeting for boron neutron capture therapy is possible with ‘less-than-ideal’ boron carriers approved for use in humans. Ther. Deliv. 6(3), 269–272 (2015).
    • 21. Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. 38(1), 36 (2018).
    • 22. Farhood B, Samadian H, Ghorbani M, Zakariaee SS, Knaup C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Rep. Pract. Oncol. Radiother. 23(5), 462–473 (2018).
    • 23. Trivillin VA, Heber EM, Nigg DW et al. Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically nonselective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat. Res. 166(2), 387–396 (2006).
    • 24. Monti Hughes A, Pozzi EC, Thorp S et al. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model. Oral Dis. 19(8), 789–795 (2013).
    • 25. Menéndez PR, Roth BM, Pereira MD et al. BNCT for skin melanoma in extremities: updated Argentine clinical results. Appl. Radiat. Isot. 67(7-8 Suppl), S50–53 (2009).
    • 26. Hiratsuka J, Kamitani N, Tanaka R et al. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget’s disease with curative responses. Cancer Commun. 38(1), 38 (2018).
    • 27. Wang LW, Liu YH, Chou FI, Jiang SH. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Commun. 38(1), 37 (2018).
    • 28. Kikuchi S, Kanoh D, Sato S, Sakurai Y, Suzuki M, Nakamura H. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J. Control. Rel. 237, 160–167 (2016).
    • 29. Fuentes I, García-Mendiola T, Sato S et al. Metallacarboranes on the road to anticancer therapies: cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide [COSAN]. Chemistry 24(65), 17239–17254 (2018).
    • 30. Teixidor F, Sillanpää R, Pepiol A, Lupu M, Viñas C. Synthesis of globular precursors. Chemistry 1 21(36), 12778–12786 (2015).
    • 31. Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 838, 35 (2018).
    • 32. Barth RF. From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Appl. Radiat. Isot. 106, 22–28 (2015).
    • 33. Workman P, Aboagye EO, Balkwill F et al. Committee of the National Cancer Research Institute (2010) Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer. 102(11), 1555–1577 (2010).
    • 34. Sonis ST, Peterson RL, Edwards LJ et al. Defining mechanisms of action of interleukin-11 on the progression of radiation induced oral mucositis in hamsters. Oral Oncol. 36, 373–381 (2000).
    • 35. López Castaño F, Oñate-Sánchez RE, Roldán-Chicano R, Cabrerizo-Merino MC. Measurement of secondary mucositis to oncohematologic treatment by means of different scale. Med. Oral Patol. Oral Cir. Bucal 10, 412–421 (2005).
    • 36. Patil S, Rao R, Raj T. Animal models – decoding the molecular biology of oral cancer. J. Contemp. Dent. Pract. 16(4), i–ii (2015).
    • 37. El-Bayoumy K, Chen KM, Zhang SM et al. Carcinogenesis of the oral cavity: environmental causes and potential prevention by black raspberry. Chem. Res. Toxicol. 30(1), 126–144 (2017).
    • 38. Nagini S, Kowshik J. The hamster buccal pouch model of oral carcinogenesis. Methods Mol. Biol. 1422, 341–350 (2016).
    • 39. Kreimann EL, Itoiz ME, Longhino J, Blaumann H, Calzetta O, Schwint AE. Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res. 61, 8638–8642 (2001). •• This paper by our group was the first report of the efficacy of BNCT for the treatment of head and neck tumors in an experimental model. It preceded the first clinical trial of BNCT for head and neck cancer.
    • 40. Kato I, Ono K, Sakurai Y et al. Effectiveness of BNCT for recurrent head and neck malignancies. Appl. Radiat. Isot. 61(5), 1069–1073 (2004).
    • 41. Heber EM, Hawthorne MF, Kueffer PJ et al. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc. Natl Acad. Sci. USA 111(45), 16077–16081 (2014).
    • 42. Heber EM, Monti Hughes A, Pozzi EC et al. Development of a model of tissue with potentially malignant disorders (PMD) in the hamster cheek pouch to explore the long-term potential therapeutic and/or toxic effects of different therapeutic modalities. Arch. Oral Biol. 55(1), 46–51 (2010). • This paper by our group compares different oral carcinogenesis protocols in terms of tumor development and follow-up of the animals after cancerization.
    • 43. Monti Hughes A, Pozzi EC, Heber EM et al. Boron Neutron Capture Therapy (BNCT) in an oral precancer model: therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval. Oral Oncol. 47, 1017–1022 (2011).
    • 44. González SJ, Pozzi ECC, Monti Hughes A et al. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer. Phys. Med. Biol. 62(20), 7938–7958 (2017).
    • 45. Monti Hughes A, Pozzi E, Thorp SI et al. Histamine reduces boron neutron capture therapy-induced mucositis in an oral precancer model. Oral Dis. 21(6), 770–777 (2015b).
    • 46. Medina VA, Rivera ES. Histamine receptors and cancer pharmacology. Br. J. Pharmacol. 161(4), 755–767 (2010).
    • 47. Monti Hughes A, Longhino J, Boggio E et al. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new “B2” configuration of the RA-6 nuclear reactor. Radiat. Environ. Biophys. 56(4), 377–387 (2017).
    • 48. Detta A, Cruickshank GS. L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res. 69(5), 2126–2132 (2009).
    • 49. Yoshimoto M, Kurihara H, Honda N et al. Predominant contribution of L-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl. Med. Biol. 40(5), 625–629 (2013).
    • 50. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 1(24), 1–9 (2014).
    • 51. Tani H, Kurihara H, Hiroi K et al. Correlation of (18)F-BPA and (18)F-FDG uptake in head and neck cancers. Radiother. Oncol. 113(2), 193–197 (2014).
    • 52. Kobayashi K, Kurihara H, Watanabe Y et al. In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer. Appl. Radiat. Isot. 115, 138–146 (2016).