We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
ReviewOpen AccessOpen Access license

Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress

    Mathilde Lorscheider‡

    *Author for correspondence: Tel.: +33 1 60 92 94 44;

    E-mail Address: mathilde.lorscheider@ipsen.com

    Ipsen Innovation, 5 avenue du Canada, Z.I. Courtabœuf, Les Ulis 91190, France

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Alice Gaudin‡

    Ipsen Innovation, 5 avenue du Canada, Z.I. Courtabœuf, Les Ulis 91190, France

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Jessica Nakhlé

    Ipsen Innovation, 5 avenue du Canada, Z.I. Courtabœuf, Les Ulis 91190, France

    ,
    Kadi-Liis Veiman

    Ipsen Innovation, 5 avenue du Canada, Z.I. Courtabœuf, Les Ulis 91190, France

    ,
    Joël Richard

    Ipsen Pharmsciences, 20 rue Ethé Virton, Dreux 28109, France

    &
    Christophe Chassaing

    Ipsen Pharmsciences, 20 rue Ethé Virton, Dreux 28109, France

    Published Online:https://doi.org/10.4155/tde-2020-0079

    Global cancer prevalence has continuously increased in the last decades despite substantial progress achieved for patient care. Cancer is no longer recognized as a singular disease but as a plurality of different ones, leading to the important choice of the drug administration route and promoting the development of novel drug-delivery systems (DDS). Due to their structural diversity, therapeutic cancer drugs present specific challenges in physicochemical properties that can adversely affect their efficacy and toxicity profile. These challenges are addressed by innovative DDS to improve bioavailability, pharmacokinetics and biodistribution profiles. Here, we define the drug delivery challenges related to oral, intravenous, subcutaneous or alternative routes of administration, and review innovative DDS, marketed or in development, that answer those challenges.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. World Health Organization website. Health Topics – Cancer – Overview. www.who.int/cancer/en/
    • 2. Center Watch. FDA approved drugs for oncology. www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic-area/12/oncology
    • 3. National Cancer Institute training module. Cancer Registration & Surveillance Modules – Cancer Treatment. https://training.seer.cancer.gov/treatment/
    • 4. Subklewe M, Von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus. Med. Hemotherapy 46(1), 15–24 (2019).
    • 5. Lewis AL, Richard J. Challenges in the delivery of peptide drugs: an industry perspective. Ther. Deliv. 6(2), 149–163 (2015).
    • 6. Richard J. Parenteral Biologics Delivery: recent progresses, key challenges and perspectives. Eur. J. Parenter. Pharm. Sci. 17(3), 94–109 (2012).
    • 7. Collins DS, Sánchez-Félix M, Badkar AV, Mrsny R. Accelerating the development of novel technologies and tools for the subcutaneous delivery of biotherapeutics. J. Control. Rel. 321, 475–482 (2020).
    • 8. Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Rel. 170(1), 15–40 (2013).
    • 9. Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 10(1), 13–23 (2015).
    • 10. Rabinow BE. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3(9), 785–796 (2004).
    • 11. Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine 3, 295–309 (2008).
    • 12. Wu Y, Loper A, Landis E et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int. J. Pharm. 285(1–2), 135–146 (2004).
    • 13. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6(3), 231–248 (2007).
    • 14. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv. Drug Deliv. Rev. 60(6), 734–746 (2008).
    • 15. Griesser J, Hetényi G, Moser M, Demarne F, Jannin V, Bernkop-Schnürch A. Hydrophobic ion pairing: key to highly payloaded self-emulsifying peptide drug delivery systems. Int. J. Pharm. 520(1–2), 267–274 (2017).
    • 16. Aungst BJ. Intestinal permeation enhancers. J. Pharm. Sci. 89(4), 429–442 (2000).
    • 17. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 106, 277–319 (2016).
    • 18. Clinical trials. Octreotide capsules. https://clinicaltrials.gov/ct2/show/NCT03252353
    • 19. Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (c10). Pharmaceutics 11(2), 1–21 (2019). • Recent review comparing two strategies for the delivery of biologics with permeation enhancers. This DDS is widely explored currently in clinical phases.
    • 20. Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes a randomized clinical trial. J. Am. Med. Assoc. 318(15), 1460–1470 (2017).
    • 21. Richard J. Challenges in oral peptide delivery: lessons learnt from the clinic and fututre prospects. Ther. Deliv. 7(2), 117–138 (2016).
    • 22. Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J. Control. Rel. 240, 504–526 (2016).
    • 23. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6(9), 688–701 (2006).
    • 24. Benny O, Fainaru O, Adini A et al. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. 46(2), 220–231 (2010).
    • 25. Khafagy ES, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv. Drug Deliv. Rev. 64(6), 531–539 (2012).
    • 26. Khafagy ES, Morishita M, Ida N, Nishio R, Isowa K, Takayama K. Structural requirements of penetratin absorption enhancement efficiency for insulin delivery. J. Control. Rel. 143(3), 302–310 (2010).
    • 27. Nielsen EJB, Yoshida S, Kamei N et al. In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J. Control. Rel. 189, 19–24 (2014).
    • 28. Kamei N, Kikuchi S, Takeda-Morishita M et al. Determination of the optimal cell-penetrating peptide sequence for intestinal insulin delivery based on molecular orbital analysis with self-organizing maps. J. Pharm. Sci. 102(2), 469–479 (2013).
    • 29. Couvreur P, Stella B, Harivardhan Reddy L et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett. 6(11), 2544–2548 (2006).
    • 30. Kotelevets L, Chastre E, Caron J et al. A squalene-based nanomedicine for oral treatment of colon cancer. Cancer Res. 77(11), 2964–2975 (2017).
    • 31. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6), 557–570 (2012).
    • 32. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61(2), 158–171 (2009).
    • 33. Lollo G, Gonzalez-Paredes A, Garcia-Fuentes M, Calvo P, Torres D, Alonso MJ. Polyarginine nanocapsules as a potential oral peptide delivery carrier. J. Pharm. Sci. 106(2), 611–618 (2017).
    • 34. Rapamycin Holdings I DBA EB. NCT04375813: trial of encapsulated rapamycin (eRAPA) for bladder cancer prevention. Clinical Trials.gouv https://clinicaltrials.gov/ct2/show/NCT04375813
    • 35. Bohan PMK, Cindass JL, Chick RC et al. Results of a Phase Ib trial of encapsulated rapamycin in prostate cancer patients under active surveillance to prevent progression. J. Clin. Oncol. 38(Suppl. 5), 34–34 (2020).
    • 36. Imran M. A novel approach to the oral delivery of biologics, peptides and antibodies. (2016). www.ondrugdelivery.com
    • 37. RaniTherapeutics. RaniPill – first in human. https://clinicaltrials.gov/ct2/show/NCT03798912?term=ranipill&draw=2&rank=1
    • 38. Abramson A, Caffarel-salvador E, Khang M et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).
    • 39. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 510(1), 144–158 (2016).
    • 40. Bellinger AM, Jafari M, Grant TM et al. Oral, ultra–long-lasting drug delivery: application toward malaria elimination goals. Sci. Transl. Med. 8(365), 365ra157–365ra157 (2016).
    • 41. Liu J, Pang Y, Zhang S et al. Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun. 8(1), 1–9 (2017).
    • 42. Liu L, Yao WD, Rao YF, Lu XY, Gao JQ. pH-responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 24(1), 569–581 (2017).
    • 43. Thakral S, Thakral NK, Majumdar DK. Eudragit®: a technology evaluation. Expert Opin. Drug Deliv. 10(1), 131–149 (2012).
    • 44. Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14(11), 781–803 (2015).
    • 45. Chaudhary S, Garg T, Murthy RSR, Rath G, Goyal AK. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J. Drug Target. 22(10), 871–882 (2014).
    • 46. Banerjee A, Pathak S, Subramanium VD, Dharanivasan G, Murugesan R, Verma RS. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov. Today 22(8), 1224–1232 (2017).
    • 47. Esseku F, Adeyeye MC. Bacteria and pH-sensitive polysaccharide-polymer films for colon targeted delivery. Crit. Rev. Ther. Drug Carr. Syst. 28(5), 395–445 (2012).
    • 48. Sinha VR, Mittal BR, Bhutani KK, Kumria R. Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int. J. Pharm. 269(1), 101–108 (2004).
    • 49. Soppimath KS, Kulkarni AR, Aminabhavi TM. Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)–guar gum hydrogel microspheres. J. Biomater. Sci. Polym. Ed. 11(1), 27–43 (2000).
    • 50. Palo M, Holländer J, Suominen J, Yliruusi J, Sandler N. 3D printed drug delivery devices: perspectives and technical challenges. Expert Rev. Med. Devices 14(9), 685–696 (2017).
    • 51. US FDA. Spritam. www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000TOC.cfm
    • 52. Becker D, Zhang J, Heimbach T et al. Novel orally swallowable IntelliCap® device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS PharmSciTech 15(6), 1490–1497 (2014).
    • 53. Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov. Today 18(1–2), 25–34 (2013).
    • 54. Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2020.05.007 (2020) (Epub ahead of print).
    • 55. O’neill VJ, Twelves CJ. Oral cancer treatment: developments in chemotherapy and beyond. Br. J. Cancer 87(9), 933–937 (2002).
    • 56. Huda S, Alam A, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: an innovative and developing strategy. J. Drug Deliv. Sci. Technol. 60, 102018 (2020).
    • 57. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2016).
    • 58. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 263(5153), 1600–1603 (1994).
    • 59. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268(1), 235–237 (1990).
    • 60. Barenholz Y. Doxil - The first FDA-approved nano-drug: lessons learned. J. Control. Rel. 160(2), 117–134 (2012).
    • 61. Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Rel. 244, 184–193 (2016).
    • 62. Yang Q, Jacobs TM, McCallen JD et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88(23), 11804–11812 (2016).
    • 63. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chemie – Int. Ed. 49(36), 6288–6308 (2010).
    • 64. Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci. Technol. Adv. Mater. 20(1), 324–336 (2019).
    • 65. McSweeney MD, Versfeld ZC, Carpenter DM, Lai SK. Physician awareness of immune responses to polyethylene glycol-drug conjugates. Clin. Transl. Sci. 11(2), 162–165 (2018).
    • 66. Anchordoquy TJ, Simberg D. Watching the gorilla and questioning delivery dogma. J. Control. Rel. 262, 87–90 (2017).
    • 67. Deng Y, Saucier-Sawyer JK, Hoimes CJ et al. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials 35(24), 6595–6602 (2014).
    • 68. Zhang T, She Z, Huang Z, Li J, Luo X, Deng Y. Application of sialic acid/polysialic acid in the drug delivery systems. Asian J. Pharm. Sci. 9(2), 75–81 (2014).
    • 69. Metselaar JM, Bruin P, De Boer LWT et al. A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug. Chem. 14(6), 1156–1164 (2003).
    • 70. Thi TTH, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug. Polymers (Basel). 12(298), (2020). www.mdpi.com/2073-4360/12/2/298#cite •• Despite the efficiency of PEG to provide stealth properties to nanoparticles, this paper highlights the need to find alternatives with better safety profile.
    • 71. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).
    • 72. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41(1), 189–207 (2001).
    • 73. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control. Rel. 132(3), 171–183 (2008).
    • 74. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015).
    • 75. Miller MA, Gadde S, Pfirschke C et al. Predicting therapeutic nanoparticle efficacy using a companion MR imaging nanoparticle. Sci. Transl. Med. 7(314), 314ra183 (2015).
    • 76. Arrieta O, Medina LA, Estrada-Lobato E, Ramírez-Tirado LA, Mendoza-García VO, De La Garza-Salazar J. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with 99mTc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal do. Cancer Chemother. Pharmacol. 74(1), 211–215 (2014).
    • 77. Yokoi K, Tanei T, Godin B et al. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett. 345(1), 48–55 (2014).
    • 78. Vaz J, Ansari D, Sasor A, Andersson R. SPARC: a potential prognostic and therapeutic target in pancreatic cancer. Pancreas 44(7), 1024–1035 (2015).
    • 79. Giordano G, Pancione M, Olivieri N et al. Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions. World J. Gastroenterol. 23(32), 5875–5886 (2017).
    • 80. Munsell EV, Ross NL, Sullivan MO. Journey to the center of the cell: current nanocarrier design strategies targeting biopharmaceuticals to the cytoplasm and nucleus. Curr. Pharm. Des. 22(9), 1227–1244 (2016).
    • 81. Heath TD, Fraley RT, Papahadjopoulos D. Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science (80-.). 210(4469), 539–541 (1980).
    • 82. Von Hoff DD, Mita MM, Ramanathan RK et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 22(13), 3157–3163 (2016).
    • 83. Autio KA, Dreicer R, Anderson J et al. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a Phase II clinical trial. JAMA Oncol. 4(10), 1344–1351 (2018). • Good example of an innovative nanotechnology system for the targeted delivery of anticancer drug, currently in clinical phase.
    • 84. Xu L, Tang W-H, Huang C-C et al. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol. Med. 7(10), 723–734 (2018).
    • 85. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1), 3–14 (2005).
    • 86. Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J. 10(1), 92–102 (2008).
    • 87. Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res. 30(10), 2485–2498 (2013).
    • 88. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J. Control. Rel. 270, 290–303 (2018).
    • 89. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006).
    • 90. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ A M, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12), 1912–1919 (2008).
    • 91. Hsiao PF, Tsai HC, Peng S et al. Transdermal delivery of poly(ethylene glycol)-co-oleylamine modified gold nanoparticles: effect of size and shape. Mater. Chem. Phys. 224, 22–28 (2019).
    • 92. Lalegani Z, Seyyed Ebrahimi SA. Optimization of synthesis for shape and size controlled silver nanoparticles using response surface methodology. Colloids Surfaces A Physicochem. Eng. Asp. 595, 124647 (2020).
    • 93. Murugan K, Choonara YE, Kumar P, du Toit LC, Pillay V. Cellular internalisation kinetics and cytotoxic properties of statistically designed and optimised neo-geometric copper nanocrystals. Mater. Sci. Eng. C 78, 376–388 (2017).
    • 94. Zhang Z, Liu C, Li C, Wu W, Jiang X. Shape effects of cylindrical versus spherical unimolecular polymer nanomaterials on in vitro and in vivo behaviors. Research 2019, 1–13 (2019).
    • 95. Visaveliya NR, Köhler JM. Single-step in situ assembling routes for the shape control of polymer nanoparticles. Biomacromolecules 19(3), 1047–1064 (2018).
    • 96. Gratton SEA, Pohlhaus PD, Lee J, Guo J, Cho MJ, DeSimone JM. Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT™ nanoparticles. J. Control. Rel. 121(1–2), 10–18 (2007).
    • 97. Merkel TJ, Chen K, Jones SW et al. The effect of particle size on the biodistribution of low-modulus hydrogel PRINT particles. J. Control. Rel. 162(1), 37–44 (2012).
    • 98. Dumont EF, Oliver AJ, Ioannou C et al. A novel inhaled dry-powder formulation of ribavirin allows for efficient lung delivery in healthy participants and those with chronic obstructive pulmonary disease in a Phase I study. Antimicrob. Agents Chemother. 64(5), 1–15 (2020).
    • 99. Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol. Ther. Methods Clin. Dev. 12, 1–18 (2019).
    • 100. Kullberg M, Mccarthy R, Anchordoquy TJ. Systemic tumor-specific gene delivery. J. Control. Rel. 172, 730–736 (2013).
    • 101. Shirley JL, De Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol. Ther. 28(3), 709–722 (2020).
    • 102. Hinderer C, Katz N, Buza EL et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. 29(3), 285–298 (2018).
    • 103. Wong KR, Menendez E, Craik CS, Kavanaugh WM, Vasiljeva O. In vivo imaging of protease activity by probody therapeutic activation. Biochimie 122, 62–67 (2016).
    • 104. Polu KR, Lowman HB. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin. Biol. Ther. 14(8), 1049–1053 (2014).
    • 105. Lin J, Sagert J. Innovations for next-generation antibody-drug conjugates. In: Cancer Drug Discovery and Development 281–298 (2018).
    • 106. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). •• Describes the opportunities in preclinical and clinical stage for the targeted delivery using stimuli-responsive drug delivery systems.
    • 107. Clinical trials. Thermodox. https://clinicaltrials.gov/ct2/show/NCT00617981
    • 108. Lyon PC, Griffiths LF, Lee J et al. Clinical trial protocol for TARDOX: a Phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J. Ther. Ultrasound 5(1), 1–8 (2017).
    • 109. Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 120, 20–37 (2017).
    • 110. Lammers PT, Gremse F, Lammers T et al. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation. Adv. Funct. Mater. 25(1), 36–43 (2015).
    • 111. Huang HY, Liu HL, Hsu PH et al. A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasound. Adv. Mater. 27(4), 655–661 (2015).
    • 112. McMahon D, Hynynen K. Acute inflammatory response following increased blood-brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics 7(16), 3989–4000 (2017).
    • 113. Tsai HC, Tsai CH, Chen WS, Inserra C, Wei KC, Liu HL. Safety evaluation of frequent application of microbubble-enhanced focused ultrasound blood-brain-barrier opening. Sci. Rep. 8(1), 1–13 (2018).
    • 114. Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. J. Control. Rel. 240, 489–503 (2016).
    • 115. Cortes JE, Goldberg SL, Feldman EJ et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer2 121(2), 234–242 (15AD).
    • 116. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med. 58(Suppl. 2), S61–S66 (2017).
    • 117. US FDA. Luthatera. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm594043.htm.
    • 118. Strosberg J, El-Haddad G, Wolin E et al. Phase III trial of 177 Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376(2), 125–135 (2017).
    • 119. Li Y, Lin TY, Luo Y et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5(4712), (2014).
    • 120. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15(6), 1527–1534 (2014).
    • 121. Tyner K, Sadrieh N. Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol. Biol. 697, 17–31 (2011). •• Very useful overview of the complex regulatory environment in the nanotechnology field.
    • 122. Collins DS, Kourtis LC, Thyagarajapuram NR et al. Optimizing the bioavailability of subcutaneously administered biotherapeutics through mechanochemical drivers. Pharm. Res. 34(10), 2000–2011 (2017).
    • 123. Kinnunen HM, Sharma V, Contreras-Rojas LR et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J. Control. Rel. 214, 94–102 (2015).
    • 124. Richter WF, Jacobsen B. Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab. Dispos. 42(11), 1890–1905 (2014).
    • 125. Dias C, Abosaleem B, Crispino C, Gao B, Shaywitz A. Tolerability of high-volume subcutaneous injections of a viscous placebo buffer: a randomized, crossover study in healthy subjects. AAPS PharmSciTech 16(5), 1101–1107 (2015).
    • 126. Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous injection volume of biopharmaceuticals—pushing the boundaries. J. Pharm. Sci. 105(8), 2255–2259 (2016).
    • 127. Leveque D. Subcutaneous administration of anticancer agents. Anticancer Res. 34(4), 1579–1586 (2014).
    • 128. Clinical trials. Octreotide. https://clinicaltrials.gov/ct2/show/NCT02299089
    • 129. US FDA. Eligard. www.accessdata.fda.gov/drugsatfda_docs/nda/2016/021343Orig1s033.pdf
    • 130. Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology 61(Suppl. 2), 25–31 (2003).
    • 131. Yang MX, Shenoy B, Disttler M et al. Crystalline monoclonal antibodies for subcutaneous delivery. Proc. Natl Acad. Sci. USA 100(12), 6934–6939 (2003).
    • 132. Johnson HR, Lenhoff AM. Characterization and suitability of therapeutic antibody dense phases for subcutaneous delivery. Mol. Pharm. 10(10), 3582–3591 (2013).
    • 133. Chan LJ, Bulitta JB, Ascher DB et al. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol. Pharm. 12(3), 794–809 (2015).
    • 134. Trainer PJ, Drake WiM, Katznelson L et al. Treatment of acromegaly with the growth hormone recpetor antagonist pagvisomant. N. Engl. J. Med. 342, 1171–1177 (2000).
    • 135. Wolin EM, Manon A, Chassaing C et al. Lanreotide depot: an antineoplastic treatment of carcinoid or neuroendocrine tumors. J. Gastrointest. Cancer 47(4), 366–374 (2016). •• Demonstrates a highly concentrated subcutaneous formulation by simple peptide autoassembly, enabling the prolonged release of the drug.
    • 136. Urquhart J, Fara JW, Willis KL. Rate-controlled delivery systems in drug and hormone research. Annu. Rev. Pharmacol. Toxicol. 24(1), 199–236 (1984).
    • 137. Redding TW, Schally AV, Tice TR, Meyers WE. Long-acting delivery systems for peptides: inhibition of rat prostate tumors by controlled release of [D-Trp6]luteinizing hormone-releasing hormone from injectable microcapsules. Proc. Natl Acad. Sci. USA 81(18 I), 5845–5848 (1984).
    • 138. Hirota K, Doty AC, Ackermann R et al. Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: in vitro evaluation. J. Control. Rel. 244, 302–313 (2016).
    • 139. Zhu S, Li X, Lansakara-P DSP, Kumar A, Cui Z. A nanoparticle depot formulation of 4-(N)-stearoyl gemcitabine shows a strong anti-tumour activity. J. Pharm. Pharmacol. 65(2), 236–242 (2013).
    • 140. Sprogøe K, Rau H. TransCon Technology – Ascendis Pharma. https://ascendispharma.com/wp-content/uploads/2018-09-24-Boulder-Presentation-Final.pdf
    • 141. Chatelain P, Malievskiy O, Radziuk K et al. Randomized Phase II study of long-acting transcon GH vs daily GH in childhood GH deficiency. J. Clin. Endocrinol. Metab. 102(5), 1673–1682 (2017).
    • 142. Barz M, Luxenhofer R, Zentel R, Vicent MJ. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym. Chem. 2(9), 1900–1918 (2011).
    • 143. Podust VN, Balan S, Sim BC et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Rel. 240, 52–66 (2016).
    • 144. Moreadith RW, Viegas TX, Bentley MD et al. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 88, 524–552 (2017).
    • 145. Harris JM, Bentley MD, Moreadith RW et al. Tuning drug release from polyoxazoline-drug conjugates. Eur. Polym. J. 120, 109241 (2019).
    • 146. Ahmed KK, Tamer MA, Ghareeb MM, Salem AK. Recent advances in polymeric implants. AAPS PharmSciTech 20(300), (2019).
    • 147. US FDA. Zoladex. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019726s050s051s052lbl.pdf
    • 148. US FDA. Lupron. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020517s036_019732s041lbl.pdf
    • 149. Sutradhar KB, Sumi CD. Implantable microchip: the futuristic controlled drug delivery system. Drug Deliv. 23(1), 1–11 (2016).
    • 150. Lee SH, Kim BH, Park CG, Lee C, Lim BY, Choy YB. Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery. J. Control. Rel. 286, 224–230 (2018). • Describes the possibility to deliver drugs on-demand using implantable device, very promising and innovative strategy.
    • 151. Prescott JH, Lipka S, Baldwin S et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 24(4), 437–438 (2006).
    • 152. Farra R, Sheppard NF, McCabe L et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4(122), 122ra21–122ra21 (2012).
    • 153. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J. Control. Rel. 90(3), 261–280 (2003).
    • 154. Otterson GA, Villalona-Calero MA, Hicks W et al. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer. Clin. Cancer Res. 16(8), 2466–2473 (2010).
    • 155. Wittgen BPH, Kunst PWA, Van Der Born K et al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res. 13(8), 2414–2421 (2007).
    • 156. Zarogoulidis P, Eleftheriadou E, Sapardanis I et al. Feasibility and effectiveness of inhaled carboplatin in NSCLC patients. Invest. New Drugs 30(4), 1628–1640 (2012).
    • 157. Kadota K, Imanaka A, Shimazaki M et al. Effects of inhalation procedure on particle behavior and deposition in the airways analyzed by numerical simulation. J. Taiwan Inst. Chem. Eng. 90, 44–50 (2018).
    • 158. Asgharian B, Miller FJ, Price O et al. Modeling particle deposition in the pig respiratory tract. J. Aerosol Sci. 99, 107–124 (2016).
    • 159. Harush-Frenkel O, Bivas-Benita M, Nassar T et al. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol. Appl. Pharmacol. 246(1–2), 83–90 (2010).
    • 160. Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B 8(3), 440–448 (2018).
    • 161. Rosière R, Van Woensel M, Gelbcke M et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm. 15(3), 899–910 (2018).
    • 162. Miglierini P, Bouchekoua M, Rousseau B, Dam Hieu P, Malhaire JP, Pradier O. Impact of the per-operatory application of GLIADEL wafers (BCNU, carmustine) in combination with temozolomide and radiotherapy in patients with glioblastoma multiforme: efficacy and toxicity. Clin. Neurol. Neurosurg. 114(9), 1222–1225 (2012).
    • 163. Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin. Pharmacokinet. 41(6), 403–419 (2002).
    • 164. Menei P, Capelle L, Guyotat J et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized Phase II trial. Neurosurgery 56(2), 242–247 (2005).
    • 165. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA 91(6), 2076–2080 (1994).
    • 166. Song E, Gaudin A, King AR et al. Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat. Commun. 8(May), 1–14 (2017).
    • 167. Conry RM, LoBuglio AF, Wright M et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55(7), 1397–1400 (1995).
    • 168. Johanning FW, Conry RM, Lobuglio AF et al. A sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res. 23(9), 1495–1501 (1995).
    • 169. Da Silva CG, Camps MGM, Li TMWY, Chan AB, Ossendorp F, Cruz LJ. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer vaccines. Biomaterials 220, 119417 (2019).
    • 170. Liang F, Lindgren G, Lin A et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in Rhesus Macaques. Mol. Ther. 25(12), 2635–2647 (2017).
    • 171. Clinical trials. mRNA-4157. https://clinicaltrials.gov/ct2/show/NCT03897881?term=mRNA-4157&rank=1
    • 172. Grabbe S, Haas H, Diken M, Kranz LM, Langguth P, Sahin U. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine 11(20), 2723–2734 (2016).
    • 173. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27(4), 710–728 (2019).