We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Enhanced oral bioavailability and gastroprotective effect of ibuprofen through mixed polymer–lipid nanoparticles

    Sadeq AL-Thamarani

    Department of Pharmacy, Faculty of Medicine & Health Sciences, Thamar University, Yemen

    &
    Ahmed Gardouh

    *Author for correspondence: Tel.: +96 279 538 2128;

    E-mail Address: Ahmed_mahmoud@pharm.suez.edu.eg

    Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt

    Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan

    Published Online:https://doi.org/10.4155/tde-2020-0125

    Objectives: The aim of this study was to design and formulate mixed polymer–lipid nanoparticles (PLNs) for the delivery of ibuprofen. Methods: The mixed PLNs were prepared by a single modified emulsification solvent evaporation method. Key findings: Core-shell-shaped mixed PLNs were successfully prepared, with sizes in the nano range (193.3 ± 0.70 to 795.8 ± 0.70 nm) and ζ potential (−26.8 ± 0.45 to −42.8 ± 0.30 mV). Entrapment efficiency ranged from 80.3 to 93.6%. Conclusions: Pharmacokinetic parameters showed great improvement in Cmax and Tmax of ibuprofen from the formulation PLNs8 compared with the respective Brufen® and pure drugs, indicating improvement in bioavailability of the drug.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Li M, Luo Z, Zhao Y. Hybrid nanoparticles as drug carriers for controlled chemotherapy of cancer. Chem. Rec. 16(4), 1833–1851 (2016).
    • 2. Saha RN, Vasanthakumar S, Bende G, Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol. 27(7), 215–231 (2010).
    • 3. Dalmoro A, Bochicchio S, Nasibullin SF et al. Polymer–lipid hybrid nanoparticles as enhanced indomethacin delivery systems. Eur. J. Pharm. Sci. 121, 16–28 (2018).
    • 4. Hao T, Qiao M, Li Z, Chen D. Progress in the study of pH and temperature sensitive biodegradable block copolymers. Acta Pharm. Sin. 43(2), 123–127 (2008).
    • 5. Yang X-Z, Dou S, Wang Y-C et al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 6(6), 4955–4965 (2012).
    • 6. Beija M, Salvayre R, Lauth-De Viguerie N, Marty J-D. Colloidal systems for drug delivery: from design to therapy. Trends Biotech. 30(9), 485–496 (2012).
    • 7. Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol. Pharm. 6(5), 1264–1276 (2009).
    • 8. Bose RJ, Lee S-H, Park H. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. J. Ind. Eng. Chem. 36, 284–292 (2016).
    • 9. Hallan SS, Nidhi Kaur V, Jain V, Mishra N. Development and characterization of polymer lipid hybrid nanoparticles for oral delivery of LMWH. Artif. Cells Nanomed. Biotechnol. 45(8), 1631–1639 (2017).
    • 10. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater. 28, 149–159 (2015).
    • 11. Yao C, Wu M, Zhang C et al. Photoresponsive lipid–polymer hybrid nanoparticles for controlled doxorubicin release. Nanotechnology 28(25), 255101 (2017).
    • 12. Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharm. 9(9), 2542–2553 (2012).
    • 13. Kumar R, Siril PF, Javid F. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C 69, 1335–1344 (2016).
    • 14. Dalmoro A, Lamberti G, Titomanlio G, Barba AA, D'amore M. Enteric micro-particles for targeted oral drug delivery. AAPS Pharmscitech 11(4), 1500–1507 (2010).
    • 15. Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using Box Behnken design. DARU J. Pharm. Sci. 23(1), 3 (2015).
    • 16. Rose F, Wern JE, Ingvarsson PT et al. Engineering of a novel adjuvant based on lipid–polymer hybrid nanoparticles: a quality-by-design approach. J. Control. Release 210, 48–57 (2015).
    • 17. Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale 9(4), 1334–1355 (2017).
    • 18. Mandal B, Bhattacharjee H, Mittal N et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9(4), 474–491 (2013).
    • 19. Liu Y, Li K, Pan J, Liu B, Feng S-S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials 31(2), 330–338 (2010).
    • 20. Hu L, Yang J, Liu W, Li L. Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv. 18(1), 90–95 (2011).
    • 21. Reis CP, Ferreira JP, Candeias S et al. Ibuprofen nanoparticles for oral delivery: proof of concept. J. Nanomed. Biother. Discov. 4(1), 1 (2014).
    • 22. Chan JM, Zhang L, Yuet KP et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30(8), 1627–1634 (2009).
    • 23. Mainardes RM, Evangelista RC. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm. 290(1–2), 137–144 (2005).
    • 24. Kwon H-Y, Lee J-Y, Choi S-W, Jang Y, Kim J-H. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids Surf. A 182(1–3), 123–130 (2001).
    • 25. Çağlar G, Yalçın S, Gündüz G, Gündüz U. Poly (DL-lactic-co-glycolic acid) microparticle-doxorubicin formulations for anti-cancer drug delivery. Eur. J. Biol. 73(1), 9–19 (2014).
    • 26. Xie S, Wang S, Zhao B, Han C, Wang M, Zhou W. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf. B 67(2), 199–204 (2008).
    • 27. Averineni RK, Shavi GV, Gurram AK et al. PLGA 50: 50 nanoparticles of paclitaxel: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation. Bull. Mater. Sci. 35(3), 319–326 (2012).
    • 28. Yu K, Zhao J, Yu C et al. Role of four different kinds of polyethylenimines (PEIs) in preparation of polymeric lipid nanoparticles and their anticancer activity study. J. Cancer 7(7), 872 (2016).
    • 29. Mancini G, Lopes RM, Clemente P et al. Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. Eur. J. Lipid Sci. Technol. 117(12), 1947–1959 (2015).
    • 30. Varshosaz J, Ghaffari S, Khoshayand MR, Atyabi F, Azarmi S, Kobarfard F. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. J. Liposome Res. 20(2), 97–104 (2010).
    • 31. Vitorino C, Carvalho FA, Almeida AJ, Sousa JJ, Pais AA. The size of solid lipid nanoparticles: an interpretation from experimental design. Colloids Surf. B 84(1), 117–130 (2011).
    • 32. Santander-Ortega M, Jódar-Reyes A, Csaba N, Bastos-González D, Ortega-Vinuesa J. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J. Colloid Interface Sci. 302(2), 522–529 (2006).
    • 33. Sharma M, Gupta N, Gupta S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv. 6(80), 76621–76631 (2016).
    • 34. Cho HJ, Lee DW, Marasini N et al. Optimization of self-microemulsifying drug delivery system for telmisartan using Box–Behnken design and desirability function. J. Pharm. Pharmacol. 65(10), 1440–1450 (2013).
    • 35. Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int. J. Pharm. 548(1), 255–262 (2018).
    • 36. Zhang L, Chan JM, Gu FX et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8), 1696–1702 (2008).
    • 37. Werner ME, Karve S, Sukumar R et al. Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33), 8548–8554 (2011).
    • 38. Wang H, Zhao P, Su W et al. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials 31(33), 8741–8748 (2010).
    • 39. Anderson TH, Min Y, Weirich KL, Zeng H, Fygenson D, Israelachvili JN. Formation of supported bilayers on silica substrates. Langmuir 25(12), 6997–7005 (2009).
    • 40. Michel R, Gradzielski M. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications. Int. J. Mol. Sci. 13(9), 11610–11642 (2012).
    • 41. Nurfazreen A, Julianto BT, Khuriah A. Determination of a poorly soluble drug, ibuprofen in rat plasma by a simple HPLC analysis and its application in pharmacokinetic study. Int. J. Pharm. Sci. Res. 6(1), 96102 (2015).
    • 42. Langguth P, Hanafy A, Frenzel D et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev. Ind. Pharm. 31(3), 319–329 (2005).
    • 43. Attia MA, Enan ET, Hashish AA et al. Chemopreventive effect of 5-flurouracil polymeric hybrid PLGA–lecithin nanoparticles against colon dysplasia model in mice and impact on p53 apoptosis. Biomolecules 11(1), 109 (2021).
    • 44. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154(3), 500–514 (2018).