We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Cell-based drug-delivery platforms

    Carmen Gutiérrez Millán

    Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain

    ,
    Clara Isabel Colino Gandarillas

    Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain

    ,
    María Luisa Sayalero Marinero

    Department of Pharmacy & Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, Spain

    &
    Published Online:https://doi.org/10.4155/tde.11.141

    Cell systems have recently emerged as biological drug carriers, as an interesting alternative to other systems such as micro- and nano-particles. Different cells, such as carrier erythrocytes, bacterial ghosts and genetically engineered stem and dendritic cells have been used. They provide sustained release and specific delivery of drugs, enzymatic systems and genetic material to certain organs and tissues. Cell systems have potential applications for the treatment of cancer, HIV, intracellular infections, cardiovascular diseases, Parkinson’s disease or in gene therapy. Carrier erythrocytes containing enzymes such us L-asparaginase, or drugs such as corticosteroids have been successfully used in humans. Bacterial ghosts have been widely used in the field of vaccines and also with drugs such as doxorubicin. Genetically engineered stem cells have been tested for cancer treatment and dendritic cells for immunotherapeutic vaccines. Although further research and more clinical trials are necessary, cell-based platforms are a promising strategy for drug delivery.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Ravi Kumar MN. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci.3(2),234–258 (2000).
    • Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov10(7),521–535 (2011).
    • Rutherford MS, Futch WS, Jr., Schook LB. Acetylated low density lipoprotein and the delivery of immunomodulators to macrophages. Targeted Diagn. Ther.5,201–223 (1991).
    • Wu F, Wuensch SA, Azadniv M, Ebrahimkhani MR, Crispe IN. Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses. Mol. Pharm.6(5),1506–1517 (2009).
    • Slomkowski S, Gosecki M. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery. Curr. Pharm. Biotechnol. (2011) (Epub ahead of print).
    • Del Pozo-Rodriguez A, Delgado D, Solinis MA, Gascon AR. Lipid nanoparticles as vehicles for macromolecules: nucleic acids and peptides. Recent Pat. Drug Deliv. Formul.5(3),214–226 (2011).
    • Wu TL, Zhou D. Viral delivery for gene therapy against cell movement in cancer. Adv. Drug Deliv. Rev.63(8),671–677 (2011).
    • Rapti K, Chaanine AH, Hajjar RJ. Targeted gene therapy for the treatment of heart failure. Can. J. Cardiol27(3),265–283 (2011).
    • Millan CG, Marinero ML, Castaneda AZ, Lanao JM. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Control. Release95(1),27–49 (2004).
    • 10  Hoffman J. On red blood cells, hemolysis and resealed ghosts. in: The Use of Resealed Erythrocytes as Carriers and Bioreactors, Magnani M, Deloach JR (Eds.). Plenum Press, NY, USA, 1–15 (1992).
    • 11  Hamidi M, Tajerzadeh H. Carrier erythrocytes: an overview. Drug Deliv.10(1),9–20 (2003).
    • 12  Jalava K, Hensel A, Szostak M, Resch S, Lubitz W. Bacterial ghosts as vaccine candidates for veterinary applications. J. Control. Release85(1–3),17–25 (2002).
    • 13  Huter V, Szostak MP, Gampfer J et al. Bacterial ghosts as drug carrier and targeting vehicles. J. Control. Release61(1–2),51–63 (1999).
    • 14  Lubitz W. Bacterial ghosts as carrier and targeting systems. Expert Opin. Biol. Ther.1(5),765–771 (2001).
    • 15  Paukner S, Stiedl T, Kudela P, Bizik J, Al Laham F, Lubitz W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert Opin. Drug Deliv.3(1),11–22 (2006).
    • 16  Altaner C. Prodrug cancer gene therapy. Cancer Lett.270(2),191–201 (2008).
    • 17  Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther.15(10),739–752 (2008).
    • 18  Lanao JM. Biological carrier systems. Advances for drug and gene delivery. G.I.T. Lab. J. Europe5,36–39 (2006).
    • 19  Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF. Dendritic cell-based cancer gene therapy. Hum. Gene Ther.20(10),1106–1118 (2009).
    • 20  Breckpot K, Escors D. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr. Metab. Immune Disord. Drug Targets9(4),328–343 (2009).▪ The use of dendritic cells in the cancer field.
    • 21  Tuyaerts S, Aerts JL, Corthals J et al. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol. Immunother.56(10),1513–1537 (2007).
    • 22  Ma J, Gallo JM. Delivery of cytotoxic drugs from carrier cells to tumour cells by apoptosis. Apoptosis3(3),195–202 (1998).
    • 23  Shao J, Dehaven J, Lamm D et al. A cell-based drug delivery system for lung targeting: II. Therapeutic activities on B16–F10 melanoma in mouse lungs. Drug Deliv.8(2),71–76 (2001).
    • 24  Ong CT, Babalola CP, Nightingale CH, Nicolau DP. Penetration, efflux and intracellular activity of tigecycline in human polymorphonuclear neutrophils (PMNs). J. Antimicrob. Chemother.56(3),498–501 (2005).
    • 25  Manabe T, Okino H, Maeyama R et al. Novel strategic therapeutic approaches for prevention of local recurrence of pancreatic cancer after resection: trans-tissue, sustained local drug-delivery systems. J. Control. Release100(3),317–330 (2004).
    • 26  Lanao JM, Sayalero ML. Cells and cell ghosts as drug carriers. In: Nanoparticulates as Drug Carriers. Torchilin VP (Eds). Imperial College Press, London, UK, 329–348 (2006).
    • 27  Gutierrez Millan C, Zarzuelo Castaneda A, Sayalero Marinero ML, Lanao JM. Factors associated with the performance of carrier erythrocytes obtained by hypotonic dialysis. Blood Cells Mol. Dis.33(2),132–140 (2004).
    • 28  Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv.7(4),403–427 (2010).▪ Interesting review about erythrocytes as delivery systems.
    • 29  Kwon YM, Chung HS, Moon C et al.L-asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release139(3),182–189 (2009).
    • 30  Banz A, Cremel M, Rembert A, Godfrin Y. In situ targeting of dendritic cells by antigen-loaded red blood cells: a novel approach to cancer immunotherapy. Vaccine28(17),2965–2972 (2010).
    • 31  Bossa F, Latiano A, Rossi L et al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am. J. Gastroenterol.103(10),2509–2516 (2008).
    • 32  Harisa GD, Ibrahim MF, Alanazi FK. Characterization of human erythrocytes as potential carrier for pravastatin: an in vitro study. Int. J. Med. Sci.8(3),222–230 (2011).
    • 33  Pitt E, Johnson CM, Lewis DA, Jenner DA, Offord RE. Encapsulation of drugs in intact erythrocytes: an intravenous delivery system. Biochem. Pharmacol.32(22),3359–3368 (1983).
    • 34  Ogiso T, Iwaki M, Ohtori A. Encapsulation of dexamethasone in rabbit erythrocytes, the disposition in circulation and anti-inflammatory effect. J. Pharmacobiodyn.8(12),1032–1040 (1985).
    • 35  Hamidi M, Tajerzadeh H, Dehpour AR, Rouini MR, Ejtemaee-Mehr S. In vitro characterization of human intact erythrocytes loaded by enalaprilat. Drug Deliv.8(4),223–230 (2001).
    • 36  Eichler HG, Gasic S, Daum B, Bacher S, Steger G. In vitro drug release from human carrier erythrocytes. Adv. Biosci.67,11–15 (1987).
    • 37  Briones E, Colino CI, Lanao JM. Study of the factors influencing the encapsulation of zidovudine in rat erythrocytes. Int. J. Pharm.401(1–2),41–46 (2010).
    • 38  Gutierrez Millan C, Bax BE, Castaneda AZ, Marinero ML, Lanao JM. In vitro studies of amikacin-loaded human carrier erythrocytes. Transl. Res.152(2),59–66 (2008).
    • 39  Bax BE, Bain MD, Talbot PJ, Parker-Williams EJ, Chalmers RA. Survival of human carrier erythrocytes in vivo. Clin. Sci. (Lond)96(2),171–178 (1999).
    • 40  Magnani M, Rossi L, Fraternale A et al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther.9(11),749–751 (2002).
    • 41  Tonetti M, Astroff AB, Satterfield W, De Flora A, Benatti U, Deloach JR. Pharmacokinetic properties of doxorubicin encapsulated in glutaraldehyde-treated canine erythrocytes. Am. J. Vet. Res.52(10),1630–1635 (1991).
    • 42  Skorokhod O, Kulikova EV, Galkina NM et al. Doxorubicin pharmacokinetics in lymphoma patients treated with doxorubicin-loaded eythrocytes. Haematologica92(4),570–571 (2007).
    • 43  Yuan SH, Ge WH, Huo J, Wang XH. Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers. Fund Am. Clin. Pharmacol.23(2),189–196 (2009).
    • 44  Luo X, Xu X, Wang XH, Zhu SJ, Ge WH. Study of Erythrocyte as carrier to prolong morphine’s duration of action. J. NanJing Univ. (Nat. Sci.)39,547–553 (2003).
    • 45  Wang GP, Guan YS, Jin XR et al. Development of novel 5-fluorouracil carrier erythrocyte with pharmacokinetics and potent antitumor activity in mice bearing malignant ascites. J. Gastroenterol. Hepatol.25(5),985–990 (2010).
    • 46  Lizano C, Perez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci.68(17),2001–2016 (2001).
    • 47  Alvarez FJ, Herraez A, Murciano JC, Jordan JA, Diez JC, Tejedor MC. In vivo survival and organ uptake of loaded carrier rat erythrocytes. J. Biochem.120(2),286–291 (1996).
    • 48  Gutierrez Millan C, Zarzuelo Castaneda A, Gonzalez Lopez F, Sayalero Marinero ML, Lanao JM. Pharmacokinetics and biodistribution of amikacin encapsulated in carrier erythrocytes. J. Antimicrob. Chemo. Ther.61(2),375–381 (2008).
    • 49  Briones E, Colino CI, Millan CG, Lanao JM. Increasing the selectivity of amikacin in rat peritoneal macrophages using carrier erythrocytes. Eur. J. Pharm. Sci.38(4),320–324 (2009).
    • 50  Rossi L, Brandi G, Malatesta M et al. Effect of listeriolysin O-loaded erythrocytes on Mycobacterium avium replication within macrophages. J. Antimicrob Chemo. Ther.53(5),863–866 (2004).
    • 51  Mishra PR, Jain NK. Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. ‘A study on the rat’. Int. J. Pharm.231(2),145–153 (2002).
    • 52  Jordan JA, Alvarez FJ, Lotero LA, Herraez A, Diez JC, Tejedor MC. In vitro phagocytosis of carrier mouse red blood cells is increased by Band 3 cross-linking or diamide treatment. Biotechnol. Appl. Biochem.34(3),143–149 (2001).
    • 53  Lotero LA, Jordan JA, Olmos G, Alvarez FJ, Tejedor MC, Diez JC. Differential in vitro and in vivo behavior of mouse ascorbate/Fe3+ and diamide oxidized erythrocytes. Biosci. Rep.21(6),857–871 (2001).
    • 54  Kim SH, Kim EJ, Hou JH et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials30(5),959–967 (2009).
    • 55  Mishra PR, Jain NK. Surface modified methotrexate loaded erythrocytes for enhanced macrophage uptake. J. Drug Target8(4),217–224 (2000).
    • 56  Shavi GV, Doijad RC, Deshpande PB et al. Erythrocytes as carrier for prednisolone: in vitro and in vivo evaluation. Pak. J. Pharm. Sci.23(2),194–200 (2010).
    • 57  Kruse CA, Freehauf CL, Patel KR, Baldeschwieler JD. Mouse erythrocyte carriers osmotically loaded with methotrexate. Biotechnol. Appl. Biochem.9(2),123–140 (1987).
    • 58  Lotero LA, Olmos G, Diez JC. Delivery to macrophages and toxic action of etoposide carried in mouse red blood cells. Biochim. Biophys. Acta.1620(1–3),160–166 (2003).
    • 59  Zocchi E, Tonetti M, Polvani C, Guida L, Benatti U, De Flora A. In vivo liver and lung targeting of adriamycin encapsulated in glutaraldehyde-treated murine erythrocytes. Biotechnol. Appl. Biochem.10(6),555–562 (1988).
    • 60  Briones E, Colino CI, Lanao JM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release125(3),210–227 (2008).
    • 61  Alanazi F. Pravastatin provides antioxidant activity and protection of erythrocytes loaded Primaquine. Int. J. Med. Sci.7(6),358–365 (2010).
    • 62  Staedtke V, Brahler M, Muller A et al.In vitro inhibition of fungal activity by macrophage-mediated sequestration and release of encapsulated amphotericin B nanosupension in red blood cells. Small6(1),96–103 (2010).
    • 63  Rossi L, Serafini S, Cenerini L et al. Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol. Appl. Biochem.33(Pt 2),85–89 (2001).
    • 64  Castro M, Knafelz D, Rossi L et al. Periodic treatment with autologous erythrocytes loaded with dexamethasone 21-phosphate for fistulizing pediatric Crohn’s disease: case report. J. Pediatr. Gastroenterol. Nutr.42(3),313–315 (2006).
    • 65  Rossi L, Castro M, D’orio F et al. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol. Dis.33(1),57–63 (2004).▪▪ Clinical trial on the use of dexamethasone 21 phosphate carrier erythrocytes in cystic fibrosis patients.
    • 66  Lucidi V, Tozzi AE, Bella S, Turchetta A. A pilot trial on safety and efficacy of erythrocyte-mediated steroid treatment in CF patients. BMC Pediatr.6,17 (2006).
    • 67  Annese V, Latiano A, Rossi L et al. The polymorphism of multi-drug resistance 1 gene (MDR1) does not influence the pharmacokinetics of dexamethasone loaded into autologous erythrocytes of patients with inflammatory bowel disease. Eur. Rev. Med. Pharmacol. Sci.10(1),27–31 (2006).
    • 68  Hamidi M, Azimi K, Mohammadi-Samani S. Co-encapsulation of a drug with a protein in erythrocytes for improved drug loading and release: phenytoin and bovine serum albumin (BSA). J. Pharm. Pharm. Sci.14(1),46–59 (2011).
    • 69  Noël-Hocquet S, Jabbouri S, Lazar S, Maunier JC, Guillaumet G, Ropars C. Erythrocytes as carriers of new anti-opioid prodrugs: in vitro studies. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326), Magnani M, De Loach JR (Eds.). Plenum Press, New York, USA, 215–221 (1992).
    • 70  Zaitsev S, Spitzer D, Murciano JC et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood115(25),5241–5248 (2010).
    • 71  Hamidi M, Rafiei P, Azadi A, Mohammadi-Samani S. Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J. Pharm. Sci.100(5),1702–1711 (2011).
    • 72  Hudson LD, Fiddler MB, Desnick RJ. Immunologic aspects of enzyme replacement therapy. An evaluation of the immune response to unentrapped, erythrocyte- and liposome-entrapped enzyme in C3H/HeJ Gush mice. Birth Defects Orig. Artic. Ser.16(1),163–178 (1980).
    • 73  Kravtzoff R, Desbois I, Lamagnere JP et al. Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur. J. Clin. Pharmacol.49(6),465–470 (1996).
    • 74  Domenech C, Thomas X, Chabaud S et al.L-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–2001 randomized trial. Br. J. Haematol.153(1),58–65 (2011).▪▪ Multicentre randomized clinical trial about the use of L-asparaginase carrier erythrocytes in adults and children with acute lymphoblastic leukemia.
    • 75  Thomas X, Cannas G, Chelghoum Y, Gougounon A. Therapeutic alternatives to native L-asparaginase in the treatment of adult acute lymphoblastic leukemia. Bull. Cancer97(9),1105–1117 (2010).
    • 76  Kravtzoff R, Ropars C, Laguerre M, Muh JP, Chassaigne M. Erythrocytes as carriers for L-asparaginase. Methodological and mouse in vivo studies. J. Pharm. Pharmacol.42(7),473–476 (1990).
    • 77  Naqi A, Deloach JR, Andrews K, Satterfield W, Keeling M. Determination of parameters for enzyme therapy using L-asparaginase entrapped in canine erythrocytes. Biotechnol. Appl. Biochem.10(4),365–372 (1988).
    • 78  Updike SJ. Entrapment of L-asparaginase in red blood cells. A strategy to improve treatment of acute lymphoblastic leukemia. Bibl. Haematol.51,65–74 (1985).
    • 79  Rossi L, Bianchi M, Magnani M. Increased glucose metabolism by enzyme-loaded erythrocytes in vitro and in vivo normalization of hyperglycemia in diabetic mice. Biotechnol. Appl. Biochem.15(2),207–216 (1992).
    • 80  Lizano C, Sanz S, Luque J, Pinilla M. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim. Biophys. Acta.1425(2),328–336 (1998).
    • 81  Ninfali P, Rossi L, Baronciani L, Ropars C, Magnani M. Acetaldehyde oxidation by aldehyde dehydrogenase loaded erythrocytes. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326), Magnani M, De Loach JR (Eds). Plenum Press, NY, USA, 165–173 (1992).
    • 82  Muthuvel A, Rajamani R, Manikandan S, Sheeladevi R. Detoxification of formate by formate dehydrogenase-loaded erythrocytes and carbicarb in folate-deficient methanol-intoxicated rats. Clin. Chim Acta.367(1–2),162–169 (2006).
    • 83  Magnani M, Fazi A, Mangani F, Rossi L, Mancini U. Methanol detoxification by enzyme-loaded erythrocytes. Biotechnol. Appl. Biochem.18( Pt 3),217–226 (1993).
    • 84  Sanz S, Lizano C, Luque J, Pinilla M. In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by a hypotonic dialysis procedure. Life Sci.65(26),2781–2789 (1999).
    • 85  Cannon EP, Leung P, Hawkins A, Petrikovics I, Deloach J, Way JL. Antagonism of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanese and sodium thiosulfate. J. Toxicol. Environ. Health41(3),267–274 (1994).
    • 86  Petrikovics I, Pei L, Mcguinn WD, Cannon EP, Way JL. Encapsulation of rhodanese and organic thiosulfonates by mouse erythrocytes. Fundam. Appl. Toxicol.23(1),70–75 (1994).
    • 87  Magnani M, Mancini U, Bianchi M, Fazi A. Comparision of uricase-bound and uricase-loaded erythrocytes as bioreactors for uric acid degradation. In: The Use of Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology (vol. 326). Magnani M, De Loach JR (Eds). Plenum Press, NY, USA, 189–194 (1992).
    • 88  Ito Y, Ogiso T, Iwaki M, Atago H. Encapsulation of human urokinase in rabbit erythrocytes and its disposition in the circulation system in rabbits. J. Pharmacobiodyn.10(10),550–556 (1987).
    • 89  Garin M, Rossi L, Luque J, Magnani M. Lactate catabolism by enzyme-loaded red blood cells. Biotechnol. Appl. Biochem.22(Pt 3),295–303 (1995).
    • 90  Adriaenssens K, Karcher D, Marescau B, Van Broeckhoven C, Lowenthal A, Terheggen HC. Hyperargininemia: the rat as a model for the human disease and the comparative response to enzyme replacement therapy with free arginase and arginase-loaded erythrocytes in vivo. Int. J. Biochem.16(7),779–786 (1984).
    • 91  Pei L, Omburo G, Mcguinn WD et al. Encapsulation of phosphotriesterase within murine erythrocytes. Toxicol. Appl. Pharmacol.124(2),296–301 (1994).
    • 92  Bustos NL, Batlle AM. Enzyme replacement therapy in porphyrias – V. In vivo correction of delta-aminolaevulinate dehydratase defective in erythrocytes in lead intoxicated animals by enzyme-loaded red blood cell ghosts. Drug Des. Deliv.5(2),125–131 (1989).
    • 93  Hamarat Baysal S, Uslan AH. In vitro study of urease/AlaDH enzyme system encapsulated into human erythrocytes and research into its medical applications. Artif. Cells Blood Substit. Immobil. Biotechnol.30(1),71–77 (2002).
    • 94  Bax BE, Bain MD, Fairbanks LD, Simmonds HA, Webster AD, Chalmers RA. Carrier erythrocyte entrapped adenosine deaminase therapy in adenosine deaminase deficiency. Adv. Exp Med. Biol486,47–50 (2000).
    • 95  Flynn G, Hackett TJ, Mchale L, Mchale AP. Encapsulation of the thrombolytic enzyme, brinase, in photosensitized erythrocytes: a novel thrombolytic system based on photodynamic activation. J. Photochem. Photobiol. B26(2),193–196 (1994).
    • 96  Bax BE, Bain MD, Ward CP, Fensom AH, Chalmers RA. The entrapment of mannose-terminated glucocerebrosidase (Alglucerase) in human carrier erythrocytes. Biochem. Soc. Trans.24(3),441S (1996).
    • 97  Moran NF, Bain MD, Muqit MM, Bax BE. Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology71(9),686–688 (2008).
    • 98  Biagiotti S, Rossi L, Bianchi M et al. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J. Control. Release154(3),306–313 (2011).
    • 99  Rossi L, Serafini S, Antonelli A et al. Macrophage depletion induced by clodronate-loaded erythrocytes. J. Drug Target13(2),99–111 (2005).
    • 100  Lanao JM, Briones E, Colino CI. Recent advances in delivery systems for anti-HIV1 therapy. J. Drug Target15(1),21–36 (2007).
    • 101  Biagiotti S, Rossi L, Bianchi M et al. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J. Control. Release154(3),306–313 (2011).
    • 102  Magnani M, Rossi L, Brandi G, Schiavano GF, Montroni M, Piedimonte G. Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc. Natl Acad. Sci. U S A89(14),6477–6481 (1992).
    • 103  Nielsen PE. Antisense peptide nucleic acids. Curr. Opin. Mol. Ther.2(3),282–287 (2000).
    • 104  Chiarantini L, Cerasi A, Fraternale A et al. Inhibition of macrophage iNOS by selective targeting of antisense PNA. Biochemistry41(26),8471–8477 (2002).
    • 105  Fraternale A, Paoletti MF, Casabianca A et al. Erythrocytes as carriers of antisense PNA addressed against HIV-1 gag-pol transframe domain. J. Drug Target17(4),278–285 (2009).
    • 106  Fraternale A, Casabianca A, Tonelli A, Chiarantini L, Brandi G, Magnani M. New drug combinations for the treatment of murine AIDS and macrophage protection. Eur. J. Clin. Invest31(3),248–252 (2001).
    • 107  Fraternale A, Casabianca A, Rossi L et al. Erythrocytes as carriers of reduced glutathione (GSH) in the treatment of retroviral infections. J. Antimicrob Chemother.52(4),551–554 (2003).
    • 108  Rossi L, Franchetti P, Pierige F et al. Inhibition of HIV-1 replication in macrophages by a heterodinucleotide of lamivudine and tenofovir. J. Antimicrob Chemo. Ther.59(4),666–675 (2007).
    • 109  Cervasi B, Paiardini M, Serafini S et al. Administration of fludarabine-loaded autologous red blood cells in simian immunodeficiency virus-infected sooty mangabeys depletes pSTAT-1-expressing macrophages and delays the rebound of viremia after suspension of antiretroviral therapy. J. Virol80(21),10335–10345 (2006).
    • 110  Garin MI, Lopez RM, Luque J. Pharmacokinetic properties and in vivo biological activity of recombinant human erythropoietin encapsulated in red blood cells. Cytokine9(1),66–71 (1997).
    • 111  Eichler HG, Schneider W, Raberger G, Bacher S, Pabinger I. Erythrocytes as carriers for heparin. Preliminary in vitro and animal studies. Res. Exp. Med. (Berl.)186(6),407–412 (1986).
    • 112  Sinauridze EI, Vuimo TA, Kulikova EV, Shmyrev, II, Ataullakhanov FI. A new drug form of blood coagulation factor IX: red blood cell-entrapped factor IX. Med. Sci. Monit.16(10),PI19–PI26 (2010).
    • 113  Ganguly K, Krasik T, Medinilla S et al. Blood clearance and activity of erythrocyte-coupled fibrinolytics. J. Pharmacol. Exp Ther.312(3),1106–1113 (2005).
    • 114  Murciano JC, Higazi AA, Cines DB, Muzykantov VR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J. Control. Release139(3),190–196 (2009).
    • 115  Gersh KC, Zaitsev S, Muzykantov V, Cines DB, Weisel JW. The spatial dynamics of fibrin clot dissolution catalyzed by erythrocyte-bound vs. free fibrinolytics. J. Thromb. Haemost.8(5),1066–1074 (2010).
    • 116  Feder R, Nehushtai R, Mor A. Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides22(10),1683–1690 (2001).
    • 117  Olmos G, Lotero LA, Tejedor MC, Diez JC. Delivery to macrophages of interleukin 3 loaded in mouse erythrocytes. Biosci. Rep.20(5),399–410 (2000).
    • 118  Polvani C, Gasparini A, Benatti U et al. Murine red blood cells as efficient carriers of three bacterial antigens for the production of specific and neutralizing antibodies. Biotechnol. Appl. Biochem.14(3),347–356 (1991).
    • 119  Garin MI, Lopez RM, Sanz S, Pinilla M, Luque J. Erythrocytes as carriers for recombinant human erythropoietin. Pharm. Res.13(6),869–874 (1996).
    • 120  Eichler HG, Gasic S, Bauer K, Korn A, Bacher S. In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin. Pharmacol. Ther.40(3),300–303 (1986).
    • 121  Murray AM, Pearson IF, Fairbanks LD, Chalmers RA, Bain MD, Bax BE. The mouse immune response to carrier erythrocyte entrapped antigens. Vaccine24(35–36),6129–6139 (2006).
    • 122  Hamidi M, Zarei N, Zarrin AH, Mohammadi-Samani S. Preparation and in vitro characterization of carrier erythrocytes for vaccine delivery. Int. J. Pharm.338(1–2),70–78 (2007).
    • 123  Hamidi M, Zarei N, Zarrin A, Mohammadi-Samani S. Preparation and validation of carrier human erythrocytes loaded by bovine serum albumin as a model antigen/protein. Drug Deliv.14(5),295–300 (2007).
    • 124  Hamidi M, Zarrin AH, Foroozesh M, Zarei N, Mohammadi-Samani S. Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b. Int. J. Pharm.341(1–2),125–133 (2007).
    • 125  Byun HM, Suh D, Yoon H et al. Erythrocyte ghost-mediated gene delivery for prolonged and blood-targeted expression. Gene Ther.11(5),492–496 (2004).
    • 126  Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl Acad. Sci. USA106(51),21495–21499 (2009).
    • 127  Liu ZC, Chang TM. Long-term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG–PLA-nano artificial red blood cells. Artif Cells Blood Substit Immobil Biotechnol.36(6),513–524 (2008).
    • 128  Desilets J, Lejeune A, Mercer J, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res.21(3B),1741–1747 (2001).
    • 129  Lejeune A, Poyet P, Gaudreault RC, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: III. Is phagocytosis involved in the mechanism of action? Anticancer Res.17(5A),3599–3603 (1997).
    • 130  Pouliot R, Saint-Laurent A, Chypre C et al. Spectroscopic characterization of nanoerythrosomes in the absence and presence of conjugated polyethyleneglycols: an FTIR and (31)P-NMR study. Biochim. Biophys. Acta.1564(2),317–324 (2002).
    • 131  Witte A, Wanner G, Sulzner M, Lubitz W. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol157(4),381–388 (1992).
    • 132  Marchart J, Dropmann G, Lechleitner S et al. Pasteurella multocida- and Pasteurella haemolytica-ghosts: new vaccine candidates. Vaccine21(25–26),3988–3997 (2003).
    • 133  Witte A, Wanner G, Blasi U, Halfmann G, Szostak M, Lubitz W. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E. J. Bacteriol.172(7),4109–4114 (1990).
    • 134  Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J. Control. Release94(1),63–74 (2004).
    • 135  Szostak MP, Hensel A, Eko FO et al. Bacterial ghosts: non-living candidate vaccines. J. Biotechnol.44(1–3),161–170 (1996).
    • 136  Langemann T, Koller VJ, Muhammad A, Kudela P, Mayr UB, Lubitz W. The bacterial ghost platform system: Production and applications. Bioeng. Bugs1(5),326–336 (2010).
    • 137  Tabrizi CA, Walcher P, Mayr UB et al. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol.15(6),530–537 (2004).
    • 138  Mayr UB, Walcher P, Azimpour C, Riedmann E, Haller C, Lubitz W. Bacterial ghosts as antigen delivery vehicles. Adv. Drug Deliv. Rev.57(9),1381–1391 (2005).
    • 139  Witte A, Lubitz W. Biochemical characterization of phi X174-protein-E-mediated lysis of Escherichia coli. Eur. J. Biochem.180(2),393–398 (1989).
    • 140  Kwon SR, Kang YJ, Lee DJ et al. Generation of Vibrio anguillarum ghost by coexpression of PhiX 174 lysis E gene and Staphylococcal nuclease A gene. Mol. Biotechnol.42(2),154–159 (2009).
    • 141  Jalava K, Eko FO, Riedmann E, Lubitz W. Bacterial ghosts as carrier and targeting systems for mucosal antigen delivery. Expert Rev. Vaccines2(1),45–51 (2003).
    • 142  Yu SY, Peng W, Si W et al. Enhancement of bacteriolysis of Shuffled phage PhiX174 gene E. Virol J.8,206 (2011).
    • 143  Resch S, Gruber K, Wanner G, Slater S, Dennis D, Lubitz W. Aqueous release and purification of poly(beta-hydroxybutyrate) from Escherichia coli. J. Biotechnol.65(2–3),173–182 (1998).
    • 144  Paukner S, Kohl G, Jalava K, Lubitz W. Sealed bacterial ghosts – novel targeting vehicles for advanced drug delivery of water-soluble substances. J. Drug Target11(3),151–161 (2003).
    • 145  Lubitz W, Witte A, Eko FO et al. Extended recombinant bacterial ghost system. J. Biotechnol.73(2–3),261–273 (1999).
    • 146  Paukner S, Kudela P, Kohl G, Schlapp T, Friedrichs S, Lubitz W. DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol. Ther.11(2),215–223 (2005).
    • 147  Haidinger W, Szostak MP, Jechlinger W, Lubitz W. Online monitoring of Escherichia coli ghost production. Appl. Environ. Microbiol.69(1),468–474 (2003).
    • 148  Haidinger W, Szostak MP, Beisker W, Lubitz W. Green fluorescent protein (GFP)-dependent separation of bacterial ghosts from intact cells by FACS. Cytometry44(2),106–112 (2001).
    • 149  Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs) – advanced antigen and drug delivery system. Vaccine28(36),5760–5767 (2010).▪ Comprehensive review that describes the characteristics of bacterial ghosts, their interaction with cells and their use as DNA delivery systems.
    • 150  Haslberger AG, Kohl G, Felnerova D, Mayr UB, Furst-Ladani S, Lubitz W. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J. Biotechnol.83(1–2),57–66 (2000).
    • 151  Mader HJ, Szostak MP, Hensel A, Lubitz W, Haslberger AG. Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine15(2),195–202 (1997).
    • 152  Eko FO, Witte A, Huter V et al. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine17(13–14),1643–1649 (1999).
    • 153  Mayr UB, Haller C, Haidinger W et al. Bacterial ghosts as an oral vaccine: a single dose of Escherichia coli O157:H7 bacterial ghosts protects mice against lethal challenge. Infect. Immun.73(8),4810–4817 (2005).
    • 154  Riedmann EM, Kyd JM, Cripps AW, Lubitz W. Bacterial ghosts as adjuvant particles. Expert Rev. Vaccines6(2),241–253 (2007).
    • 155  Walcher P, Mayr UB, Azimpour-Tabrizi C et al. Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors. Expert Rev. Vaccines3(6),681–691 (2004).
    • 156  Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu. Rev. Immunol15,617–648 (1997).
    • 157  Felnerova D, Kudela P, Bizik J et al. T cell-specific immune response induced by bacterial ghosts. Med. Sci. Monit.10(10),BR362–370 (2004).
    • 158  Kudela P, Paukner S, Mayr UB et al. Effective gene transfer to melanoma cells using bacterial ghosts. Cancer Lett.262(1),54–63 (2008).
    • 159  Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect. Immun.68(1),54–63 (2000).
    • 160  Sprott GD, Patel GB, Krishnan L. Archaeobacterial ether lipid liposomes as vaccine adjuvants. Methods Enzymol.373,155–172 (2003).
    • 161  Scholl I, Boltz-Nitulescu G, Jensen-Jarolim E. Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J. Control. Release104(1),1–27 (2005).
    • 162  Zhao Y, Wang S. Human NT2 neural precursor-derived tumor-infiltrating cells as delivery vehicles for treatment of glioblastoma. Hum. Gene Ther.21(6),683–694 (2010).
    • 163  Chiu AY, Rao MS. Cell-based therapy for neural disorders – anticipating challenges. Neurotherapeutics8(4),744–752 (2011).
    • 164  Dhara SK, Majumder A, Dodla MC, Stice SL. Nonviral gene delivery in neural progenitors derived from human pluripotent stem cells. Methods Mol. Biol767,343–354 (2011).
    • 165  Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr. Stem Cell Res. Ther.1(3),365–369 (2006).
    • 166  Studeny M, Marini FC, Dembinski JL et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst96(21),1593–1603 (2004).
    • 167  Loebinger MR, Sage EK, Janes SM. Mesenchymal stem cells as vectors for lung disease. Proc Am. Thorac. Soc.5(6),711–716 (2008).
    • 168  Min CK, Kim BG, Park G, Cho B, Oh IH. IL-10-transduced bone marrow mesenchymal stem cells can attenuate the severity of acute graft-versus-host disease after experimental allogeneic stem cell transplantation. Bone Marrow Transplant39(10),637–645 (2007).
    • 169  Yang H, Joo KI, Ziegler L, Wang P. Cell type-specific targeting with surface-engineered lentiviral vectors co-displaying OKT3 antibody and fusogenic molecule. Pharm. Res.26(6),1432–1445 (2009).
    • 170  Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res.62(20),5657–5663 (2002).
    • 171  Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp. Neurol.199(1),179–190 (2006).
    • 172  Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp. Dermatol.15(11),865–874 (2006).
    • 173  Yang SY, Liu H, Zhang JN. Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12. DNA Cell Biol.23(6),381–389 (2004).
    • 174  Frank RT, Edmiston M, Kendall SE et al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One4(12),e8314 (2009).
    • 175  Yip S, Sabetrasekh R, Sidman RL, Snyder EY. Neural stem cells as novel cancer therapeutic vehicles. Eur. J. Cancer42(9),1298–1308 (2006).
    • 176  Ahmed AU, Lesniak MS. Glioblastoma multiforme: can neural stem cells deliver the therapeutic payload and fulfill the clinical promise? Expert Rev. Neurother.11(6),775–777 (2011).▪▪ Current and complete review about the use of neural stem cells in anti-tumoral therapy.
    • 177  Aboody KS, Najbauer J, Schmidt NO et al. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro Oncol8(2),119–126 (2006).
    • 178  Dieterlen MT, Wegner F, Schwarz SC et al. Non-viral gene transfer by nucleofection allows stable gene expression in human neural progenitor cells. J. Neurosci. Methods178(1),15–23 (2009).
    • 179  Scaife MD, Neschadim A, Fowler DH, Medin JA. Novel application of lentiviral vectors towards treatment of graft-versus-host disease. Expert Opin. Biol. Ther.9(6),749–761 (2009).
    • 180  Brenner S, Malech HL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim. Biophys. Acta.1640(1),1–24 (2003).
    • 181  Trobridge GD. Foamy virus vectors for gene transfer. Expert Opin. Biol. Ther.9(11),1427–1436 (2009).
    • 182  Su L, Lee R, Bonyhadi M et al. Hematopoietic stem cell-based gene therapy for acquired immunodeficiency syndrome: efficient transduction and expression of RevM10 in myeloid cells in vivo and in vitro. Blood89(7),2283–2290 (1997).
    • 183  Trobridge GD, Wu RA, Beard BC et al. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS One4(11),e7693 (2009).
    • 184  Huber A, Padrun V, Deglon N, Aebischer P, Mohler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc. Natl Acad. Sci. USA98(13),7611–7616 (2001).
    • 185  Boison D, Huber A, Padrun V, Deglon N, Aebischer P, Mohler H. Seizure suppression by adenosine-releasing cells is independent of seizure frequency. Epilepsia43(8),788–796 (2002).
    • 186  Boison D. Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res.85(2–3),131–141 (2009).
    • 187  Sunkomat JN, Gaballa MA. Stem cell therapy in ischemic heart disease. Cardiovasc. Drug Rev.21(4),327–342 (2003).
    • 188  Makar TK, Trisler D, Bever CT et al. Stem cell based delivery of IFN-beta reduces relapses in experimental autoimmune encephalomyelitis. J. Neuroimmunol196(1–2),67–81 (2008).
    • 189  Peng LH, Tsang SY, Tabata Y, Gao JQ. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration. J. Control. Release doi:10.1016/j.jconrel.2011.08.027 (2011) (Epub ahead of print).
    • 190  Facca S, Ferrand A, Mendoza-Palomares C et al. Bone formation induced by growth factors embedded into the nanostructured particles. J. Biomed. Nanotechnol7(3),482–485 (2011).
    • 191  Draube A, Klein-Gonzalez N, Mattheus S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One6(4),e18801 (2011).
    • 192  Tkachenko N, Wojas K, Tabarkiewicz J, Rolinski J. Generation of dendritic cells from human peripheral blood monocytes – comparison of different culture media. Folia. Histochem. Cytobiol43(1),25–30 (2005).
    • 193  Toscano MG, Delgado M, Kong W, Martin F, Skarica M, Ganea D. Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol. Ther.18(5),1035–1045 (2010).
    • 194  Birkholz K, Schwenkert M, Kellner C et al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood116(13),2277–2285 (2010).
    • 195  Breckpot K, Heirman C, Neyns B, Thielemans K. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J. Gene Med.6(11),1175–1188 (2004).
    • 196  Van Nuffel AM, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol. Biol.629,405–452 (2010).
    • 197  Arce F, Kochan G, Breckpot K, Stephenson H, Escors D. Selective activation of intracellular signalling pathways in dendritic cells for cancer immunotherapy. Anticancer Agents Med. Chem. (2011) (Epub ahead of print).
    • 198  Puig-Kroger A, Relloso M, Fernandez-Capetillo O et al. Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells. Blood98(7),2175–2182 (2001).
    • 199  Escors D, Lopes L, Lin R et al. Targeting dendritic cell signaling to regulate the response to immunization. Blood111(6),3050–3061 (2008).
    • 200  Arce F, Breckpot K, Stephenson H et al. Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum.63(1),84–95 (2011).
    • 201  Song XT, Evel-Kabler K, Shen L, Rollins L, Huang XF, Chen SY. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat. Med.14(3),258–265 (2008).
    • 202  Breckpot K, Aerts-Toegaert C, Heirman C et al. Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine. J. Immunol182(2),860–870 (2009).
    • 203  Kool M, Van Loo G, Waelput W et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity35(1),82–96 (2011).
    • 204  Matmati M, Jacques P, Maelfait J et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet.43(9),908–912 (2011).
    • 205  Akazawa T, Shingai M, Sasai M et al. Tumor immunotherapy using bone marrow-derived dendritic cells overexpressing Toll-like receptor adaptors. FEBS Lett.581(18),3334–3340 (2007).
    • 206  Lambrecht BN. Dendritic cells and the regulation of the allergic immune response. Allergy60(3),271–282 (2005).
    • 207  Stoop JN, Robinson JH, Hilkens CM. Developing tolerogenic dendritic cell therapy for rheumatoid arthritis: what can we learn from mouse models? Ann. Rheum. Dis.70(9),1526–1533 (2011).
    • 208  Zhao Y, Zhang A, Du H, Guo S, Ning B, Yang S. Tolerogenic dendritic cells and rheumatoid arthritis: current status and perspectives. Rheumatol. Int. (2011) (Epub ahead of print).
    • 209  Patham B, Simmons GL, Subramanya S. Advances in dendritic cell-based vaccines for HIV. Curr. Med. Chem.18(26),3987–3994 (2011).
    • 301  Menon LG, Shi VJ, Carroll RS. Mesenchymal stromal cells as a drug delivery system. In: StemBook. Silberstein L (Ed.). The Stem Cell Research Community. Harvard Stem Cell Institute, Harvard University, USA. StemBook, doi/10.3824/stembook.1.35.1 (15 Jan 2009). www.stembook.org/node/534▪▪ Complete review on mesenchymal stromal cells.